
`.

DOCUMENT USUME

.ED 148-506
- , s

AUTHOR k Charp, _Sylvia; And, Others.
ti TITLE Algorithms, Computation and Mathemat cs. Student

Text. Revised Edition. , .

INSTITIFTION Stanford Univ., Calif. School Mathema icso' Stj9
Group- .

SPONS AGENCY National Science.Foundation, Washin D.C.
fUB,DATE 66 J ,.__
NOTE 456p.;. Forrelated aoamen see SE 022 ,984 =988; Not

available, in hard ccpy ue.to marginal legibilityof
original avument; kag. 's 3=6 musing; Best Copy
Available

.

4

SE 022 983

EDRS PRICE .MF-$0.83 Plus Postage. HC Not Available_izom_ED, ..,____

DESCRIPTORS *4gorithm8; *Computers; *Instr,uctional Materials;
Program4ng Languages; Secondary Education; *Secondary*
Schoel/tathematics; *textbooks

IZIENTIFIERS *School Mathematics Study Group

`ABSTRACT
ThiS text contains material designed for about 18

weeks df study at grades 11 or 12. Use of a computer with the course
is highly recommended. bevelopinga-n understavding of the
relationship between mathematic's, computers, and problem solving is
the main objective of this book. The following chapters are included-
in the book: (1) Algorithms, Language, and Machines; (2) Input,
Output, and Assignment; (3) Branching and Subscripted Variablep;

'Looping; (5}-' Functions and Procedures; (6) Apprcximations; (7) Some
Mathematical App ,lications; and (8) Compilation and Some Other
Non- Numeric Problems. Also included is a, discussion on futbre,1
computer applications. (RH)

.*******.
* - loduments acquired by ERIC include many informal unpublished , *
* materials pot available from other sopices. ERICimakes every effort *
* totobtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encouliteredand this affects the quality *,..

* of the microfiche and hardcopy reproductions ERIC makeS availAblv *

N* via the ERIC Document Reproduction Service 1EDRSy. EDRS as not *

. * hasponsiblefor the quality of the original document. Reproductions *
* supplied by EDRS are he bes that'can be made from the original. ''''*

/********************** ******* **

U S DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPJNIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR pbt. icy

ALGORITHMS,
COMPUTATION _

AND
MATHEMATICS

Student Text

Revised Edition

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

SMSG

_

TO _D-46. EDUCATIONAL RESOURCES
INFORMATION CENTER (ERICI AND
THE ERIC SYSTEM" CONTRACTORS

The following is a list of all those who participated in the preparation of this
0volume:

A
Sylvia Charp, Dobbins Technical High Schoor-Philadelphia, Pennsylvania
Alexandra Forsythe, Gunn High School, Palo Alto, California
Bernard A. Galler; University of Michigan, Ann Arbor, Michigan
John G. Herriot, Stanford University, California 1
Walter Hoffmantil Wayne State University, Detroit, Michigan
Thomas R. Hull, University of Toronto, -Wont°, OrrOario, Canada
Thomas A. Keenan, University of Rochestr, Rochester, New York
Robert E. Monroe, Wayne State University, Detroit, Michigan
Silvio 0. Navarro, University of Kentucky, Lexirigton, Keiltucky
Elliott I. Organick, University of Houston, Houston, Texas
Jesse Peckenham, Oakland Unified School District, Oakland, California
George 4. Robinson, Argonne NationalLaboratory, Argonpe, Illinois
Philip M. Sherman, Ekll Telephone Laboratories, Murray Hill, New Jersey

.Robett E. Smith, Control Data Corporation, St. Paul, Minnesota
Warren Stenberg, University of Minnesota, Minneapolis, Minnesota
Finley Tillitt, U. S. Naval Ordnance Test Station, China Lake, California
Lyneve Waldrop, Newton South High School,Newton, Massachusetts

The following were the prtnapal consultants: ,

4

Bernard A. Galler, University of Michigan, Ann-Arbor, Michigan
Wallace Given's, Argonne "National'lrbotatory, Argonne, Illinois

...
a

r.® 1965 and 1966 by The Board of Trustees of the Leland Stanford Junior University-
, All rights rem-red j 7

Printed in the United States of America

1"

AO.

4

Permission to make verbatim use of material in this book must fie-seeeired --
from the Director-of SMSG. Such permission will be granted except 1717

, .

unusual circumstances. Publicatiora incorporating SMSG materials unlit
include both-an acknowledgment of the SMSG copyright (Yale Univer-
sity or Stirnfordliniversity, as the case may be) and adiglaimer of SMSG
endorsement. ,thlusive license will not be granted save in exceptional

. -

circumstances, and then only by specifia actioU of the Advisory Board of

SMSG.

d

-f

Financial support for the School Mathematics Study Group has been
provided by the-National Science Foundation.

a

FOFtgoiORI2

The increasing contribution of mah#matics to the culture ,of the modern
world, as well as its importqnce as a vital part of scientific and humanistic.
'educetion,'has made it essential that the Mathematics in our schools be both

well.selected-and-1,teZ1 taught.

With this in mind, the various mathematical organizations in the United
States cooperated in the formation of the Schoog Mathematics Study Group (SMSG).
SMSG includes college and university mathematicians, teat4rs of mathematics
At all levels, experts in education, and representatives ofscience and

.

technology. The gerlifa oh-jedtie of SMSG is the improvement of the teaching.
-of mathematics in the schools of this country. ;Ile fictional Science,Foundation

.has provided substantial funs for the support, of this endeavor.,

One of the prerequisites for the improvement of the teaching of mathe-

matics in our schools is'an improved curriculums--
one which,takes account

I .
of the increasing use -of mathematiCs in science and technology' and-in othef
areas of knowledge and at the same time one whiCh reflects recent advancesin,

mathematics itself. One of the f st IfPojects undertaken by SMSG'was to enlist
a group of outstanding mathematicians and mathematiCs

teachers to prepare a,.

series of textbooks which would illustrate such,an impro'ved curriculum.

The professional mathematicians in SMSG believe that the mathetiatiCs

' presented in this text is valuable for all well- educated citizeps in our society
to know and that it is important for the precollege student to learn in prepara-
tion flr advanced work the field. At the same time', teachers in SMSG believe
that it is presented in such a form that it can be readily grasped by 4udentst

As;

In most instances the material will have a familiar, notes butthe presen-
tation and the point of view will be'different. Some material will be entirelt.
new to the traditional curriculum. This is as it should be, for mathematics

is a living and an ever-
\

rowi sub e n-,-preduetr--ef

e k , ,antiquity:. Thls healthy fusion df the old and thnewistiould,lead,atudents to
406

a better r-understanding of the basic concept's and.Structure of mathematiCA and

:AO egl o-.4 .4.

provide a firmer foundation for understanding, and use of, mathematics in a,
scientific society.

e .t

iii

e "*

4 p

,1 4

o
6 "N

('

It is not intended that this book be'regel-ded as the only definitf'Ve.w4r,

of presenting good mathematics to students at this level. Insteacl, it should

.be thought of as a sample of the kind of improved curriculum, that

as a source of suggestions fOr the authors of commercial textbooks. It i;

sincerely hoped that these texts will lead the way toward inspiring a more

meaningful way of teaching Mathematics, the Queen and Servant of the Sciences.

.1

tt

. s

o.

yr,

9

O

7 7>

*

PACE

.e;,'

To The Student: .

0
/

'

A new computer tcience is. emerging as a discipline-in the colleges and '__
_ ,

universities of our land. .Cm a growing mumbetf COIlegebampuses studefits
.

who are majoring. in engineering, mathematics, business',and Other areas, ,-

are-being urged orreven required to gain at least an intYaductory tiew-of

this new science, before stepping into a compUterLinfluenced society.
1'

An introductiOn to computer science is muchspoore then-a-quiCk-"how to

do it"-on the use o; computers. Among other things, it is based on and ie
an extension of the matheMatics you now know. Developing an understanding of

t1 relationship between mathems±ics computers, and problem solving is the

ma''kr ob4ective of this book. ,The "how-to-do-it" or technique of computing

is also necessary. /ou will find yourself acquiring such Skills as a valuable

by-product of tale learning process that you are
>
now embarking on. The

opportunity is here. Seiie it!
if*

.

0

ti

FOPEWORD
_ y .

PREFACE

NIIABLE OF CONTENTS' "o!'

Chapter
.

1 ALGORITHMS', LANGUAGE AND
.

MACHINES 1 '

1-1. IntrOduction. , a ' 1
4.. 1-2. A Little History ' 1 . 3 ,

1-3. Some Technical Aspects of Computers 7
1-4. Numbers'and Other Characters 17
1-5. Algorithms 24
1-6. Comments on Language

, 31

2 INPUT, OUTPUT AND ASSIGNMENT ,., , ,
4 , 35

2-1. The Flow Chart Concept
35 et,

2-2. Repetition. 1
' 414

2-3. AssIgnment--arnd Variables 45
2-4. ,Arithmetic Expressions . 54
2-5. Rounding Functions 69
2-6. Alphanumeric- Data s '81.

,

3 BRANCHING AND SUBSCRIPTED VARIABLES .

89
3-1. Branching . . 89
3-2. Auxiliary Variables. V 102
3-3. Compound Conditions.and Mujogple Branching 120
3-4. Precedence Levels for Relations 130. .

3-5'.. Subscripted Variables 134
oo.3-6. Double Subscripts 149

.
.

4 LOOPING
Y57

4-1: Looping
157

4-2. Iilustrative Examples, 165.
4.3%, Table-Look-Up 179
4-4. Nested Loops 190

..,

,

r' FUNCTIONS AND PROCEDURES '

5-1. Reference Floi;Charts, 215
5-2. Mathematical. Functions 221
5-3. Getting'In and Out of a Functional Reference .

229 T1.1
5-4. Procedures 241 :

5-5, Extensions to Reference Flow Chartsandktlieir Models. 251
5-6. Character Strings, _._ _ _ 259

APPROXIMATIONS . ,
, .265

6L1. ,IntrOduction'
) 265

6-2: Mopping and*unding to ,n Digits N 267
6-3: three Digit Arithmetic

' , 268
6-4. Implications of,Finite Word Length -271
6-5. ,Non-AssOciativity of Computer 'Arithmetic 277
,6-6.' Some Pitfalls ' r

,--

281
,

6-7. More,Pitfalls 286
6-8. Approximating Functions,' 288

76

-

J

vii'

1'

Chapter .

7,, SOME MATHEMATICAL APPLICATIONS
Root of an Equation bY1Asection
The Area Under g: Curve: An example, y =

- between x = 1 an

TheArea,Under a Curve: The Gener

Simultaneous Linear Equations.
systematic method

7-5. Simultaneous Linear

se

l/x

veloping a
solution. .

atioris: Gauss Algorithm

295

311
324

330,

A4338

8 COMPILATION AND OTHER NOV-NUMERIC PROBLEMS 359

8-1, Introd ion . 359

8-2. Symbol Manipulation 361

8-3:,..A Languagerto be Translated 369

8,4-:,Prescan, (the preliminary steps of a compiler) . : . 374

"3-5. The Decompositign of ASsignment Statements 390

8 -6.° A Decomposition Flow Chart 401 .

EPilogue THEFUTURE FOR COMPUTERS '409

-E-1. Computer Applications Today ..,+
409

E-2. Changes in Computer..Directions
._ 4., 4t3-

E -3. New Problems .

t E-4. Preparing for the Future '' 4 414

APPENDIX A

APPENDIX,* . . .

INDEX

415

446

1

Age.

11.

viii i

r

Chapter 1

ALGORITHMS, LANGUAGE AND MACHINE

,:"1-1 Introduction
(

.

1
. '..

These are the early,
<
exciting years of a revolution in manls ability

--

4o,prOcess and use information. This.is..the computer revolution. It

promisqs to be at least as far-reaching as the industrlai revolupion of theN.
. -tk,steam engine. Twenty-;five thousand electronic computers are in.use in the

United States alone. They represent an investment of eight billion dollars.
,

Whatis_mme, 'six to seven thousand computers are-being made each year...

The work ofrliterally millions of people (including scientists,

a
Modern digital, mputers are essential in a vast range of activities,,

, .

many of which we npw accept as comnonplace,but which were impossible to
,

carry out just ten or fifteen years ago. The air transportation industry

could not exist, as we know it today, without computers. The computer is

Oused in every stage of'the design., construction, and testing D new air-.

craft. The airlines depend on computers to.schedule their planes, to make

flight glans, to keep track of passengers reservations, ty flY the planes '

,----,..
(an ,autopilot is h>special kind of computer), and even to guide the planes

.. ,
, .

° - on
.

take-off and landing. Other industries have becOme just about as depen-: k

dent on.compliters; for example, nationwidePredit card systems would be
. v. l

r,. .

. . .

,,,r7_174e,explcipy4on of space demands large 'numbers of computers.{ 'A spade

enkneers, economists, medical doctors, nurses, designers, salesmen,

tea ters,' machinists, financialworkers, social workers, writers,.editors,

,linguists, archeologists, etc.) is being changed by new uses .of computers.

Every "person in tie country needs, some understanding of computers ead the .?

ways they can be red to help in solving pnoyiems. .

-' inoperable without computers,

7 '
vehiclb must be guided dnto a very precise'orbit., The booster 'locket must

. .
.2

0

be carefully Controlled in direction and in the,length of time it'Dur4o.ns.
,/ 0

Even alight errors in,tps pontrol would mean a failure to achieve orbit.
...,

To get this precise control,rol, the booster is followed by radar, its position

beihg continually transited to a computer which calculates its velocity,

Sirigacceleration and the Ch' es (if any) that are needed!to follow the planned,
,

trajectory. Signals frcit the computer are then transmitted to.the booster

1

;

1-1

to control its steering or to cat it off 'et the right instant. Similarly

Computers are required for.thb calculation of course-corgction maneuvers,

for rendezvous maneuvers, retrorocket firing, and practically every other

event occurring in space exploration.

Important Uses of compute'rs occur in many other f elds. Medicine

making increasinguse of computers to aid in the diagnosis of illness

analyze the progress of a patient's treatment.' Computers assist in t

editing of,literature and even in the automatic setting of type at t

printers. ;Designers (incleing architedts and product desi hers) ar

usening tb us computers connected to television screens. Ttfey can t

and modify-their design as if the Screenyere a drawing board.

begi

disc

In short, it' is hard to think of any field of activity whic is no

using computersor, at least, for which pot9ntial uses_are not eing

demonstrated. in ;cientific laboratories. No matter what you hope to e
'

whether rot plan to, be a homemaker or an astronaut, you are going t. use

computers. This book'will teach you what 'computers really a e and ow they

'can be usedan understanding which will be of tremendous value t. you in

lay

any vocation.

I.

J

11111111111

2

0"

1-3 Some Technical Aspects of Computers

1-

Two types of electronic computers,
analog and digital,,are in widespread

use. The difference between them lies in the Hay that each type represents
numbers. in an analog:computer, numbers .are represented by thg size of a

continuously variable quantity such as the speed of a rotating shaft or an

electrical voltage.. In a digital comptter, numbers are represented by

discrete codes to stand for integers (as an ex610301. Analog Computars are

useful and important tut they are not t'ie subject of thts.book. Other than
in the present paragraph, we'will always use "computer" to mean digital
computer.

We know that a .computer has electronic circuits which iisn somehow store
numbers. We don't want to get too deeply involved in hoy this can be done

physically since there are many techniques and an adequate description of

any one of them is beyond the stope"of this book. We will very briefly

describe one of the most common storage devices the magnetic core;

A magnetic core is a tiny doughnut (perhaps 1/20 inch outside diameter),
.

made of a magnetizable material, Figure 1-f .shows twa ways in which a core

can be magnetized (that is, clockwise or counter-clockwise)..

a

Figure 1-1. Direction of magnetizahon of bores

k' 4ou may know that an electrical current-cam-induce m etism as in an

electromagnet. In particular, if ,.a fine WireAs, wrapped around the'bore as in
.

Figure 1 -2f the direction of tagneti:zation. of the'core can be Controlled by

electrical currents in the wfre. In fact, the direction of magnetization can

.be-changed.very qui- ckly' (less than'a milli nth of a second).

.1'

't

.0

%Figure 1 -2.. A core with wire wrapping

1

1-3

,One direction of magne-4zation can lie.used to represent the binary

digit'"0", the other the binary digit "1": 'Thus, with enough off' these wire-

wrapped cores,we could store, in magnetic form, the binary representation of

any. number., The catch is that for practical use, we need an awful lot of

Cores. (A typical small computer may have. 100,000 cores, a large computer

may have over ten million.) So, the real problemkis hoer d'computer selects

an individual core ostore a binary digit in it or to' find out which digit

(0 or 1) is already stored in the core.' -

Typically the magnetic cores are arranged In a plane rectangular array.
. .

Imagine a "screen" of_ very find wires and-a core at eacl intersection of:.

wires. Each core now has two wires associated with it,giving the coordinates

of core in the plane.'jn reality' yire does naP.have.to be wrapped
.

around a core. It is sufficient for the wires to pass throUgh the hole of

-the doughnut 'as is shown schematically in Figure 1-3.
'

J

.

$
. ..

I'l

.

-
-

1

V I.'

.

6

%

$ -"--

-

e

--....., .-
.

.
.

ir. .

.

.

., .
1.. '

Figure 1-3. An array of magnetic-cores (01'1'1yonecore

shown) _ _ .

Ari individual core from an array which may contain several thousand can now

,I be found by picking just,twowires at the same time. Each wire is,associated,'

with many cores but there is just one core where the wires cross. The

material from which"the cores are made has the remarkable prOpertythat a

critical minimum amount of current is needed to change the direction of *

, magnetization. It behaves like a ball thrown on the sloping'
.

8

1,2
4

1-3

'roof of a house. If you don't thr * hard enough, the bail will come down on

the same side as it .started. Th ow it just hard enough and it will come,i 9

down on the other side. So if half (orjust a,little more) of the critical

' amount of current is,se along each of theytwo selected wires in the

"screen," only the,,p re'at.the intersection of the wires can be affected.
f-,...-/-

To summrize: , 4
..".°

.

Each c e can store a binary digit,

(b) an ind iaual core can be selected from among the thousands

in a computer, and

(c) the direction of magnetization of a core can be changed in

less than a milliohth of a second.

Usually the planes of Magnetic cores are stacked side by side (or on

top of one another). The cores lying in e line perpendicular to the.planes

(not c nnected by any Wires) are then conveniently treated together as the

binary ',igits (or "bits" from the first two and last two letters of binary

digits the binary representation of a number. This related group of
FL

bitsis called a computer word (or simply word, if no confution results).

cores considered together
as containing the
bits of a

Z'ojTv

Figwre 1-4.\ A stack of magnetic core planes andthe

re iionship of the,bIts of a word

Of, course, the bits n a word cars be used to represent things other than

binary numbers. The'de mal for example, can,be,represented by a

grouping of fOur bits r each digit; letters Of the alphabet can ip repre-

sented by a,groupin more bits (at least six are needed for each character
1

if let rs-and ai ,are to be represented). Representations of numeric

acters will be farther discusseifirection 1-4.and glpha'oetic

44

1-3

The Store

If you have-ever shopppd in a large'supermarket. or.a department store

you, already know how helpful it is to have large signs like DRUGS or:sultams,-

to identify the 'sections in which the drugs and sundries are sold. In

general, a means of identifying a location is called an address (like the

address of your home or of a post office boX).

Here we do not want to discuss.supermarkets'(or delicatessens) but the

section of the computer in which information is stored.' This store also uses

addresses to identify the different words (made up of tits stored in cares).

Most commonly, the, integers (including zero) are used for addresses in a

computer Store. The word memory is often used in place of store. Some

people have preferences for one word or the other but we will use them.inter-

changeablz.,

From the description of how magnetic cores work' it should be clear.th4

only one thing can be stored ,in a word at one time. Therefore., -when; new

informatn is placed in a word of Store, whatever was there before is de -.

-stroyed. This is called destructive read-in.
4

We-have not told you what happens when information stored in magnetic

cores is requested. Actually, computers are built so that aicopy of what

is stored in a Word is made in responie to a request fp0thak information.

The original information remains in the store. Thii' is called non!destruc-

tive read-out.
,ti

A hypdthetical computer called SAMOS (which doesn't stand for anything

special) is described in Appendix A. Each model of computer is different

''in detail but SAMOS is intended to be representative in its overall plan.

The store Cf SAMOSiConsists of 10,000 words each of which can contain a

/

' sign (+ or -) and ten /etterikor digits so that a SAMOS word hab

groupings of bits (from left to right).

1 2 3 4;5 6 .7 -8 910

±1

- Structure of a SAMOS word A'

119

It is convenient to think of the computer store as an arrangement of boxes

(or pigeonholes, such as those used for sorting mail).

1-3

110

Each box corresponds

/

00021

J
99971

C-

9991

9991.

Figure 1-5. The store of SAMOS

- .

to a eomputer word and can cont4J1- just ten characters at a time. The boxes
.

,are identified by the integers 0000, 0001, .,., 9999 which are the addresSei

of SAMOS.

0

A SAMOS instruction is ten characters in length and it always has a +

sign dt the beginning: Thus, one instruction fit s in one ward of the store

(rememter the store3 program concept from Section 1-2).

-
Num the ten positions of a word from left to right, every SAMOS

instruction he following form:

Positions Meaning ---

Sign - No meaning,iassumed always + .

1,2,3 , A code for the operation 4o be perforffied.

For example, ADD for addition, MFY for .0
multiplication, etc.

. .

4,5,6 We will always assume zero in these pos-
tions although,,Appendix A- does make tse

1--lof them.

A four-digit number, giving the address of
a SAMOS word. . ;

.7,8,9,10 -,

' 11

1-3
S

1 4, 5 6 7 8 B 10

I+ 1 ro I 0 = 0 I i
i ;

I

operation
code

',,M
address

Fiatre 1-6: Structure ofe'SAMOS instruction

The Arithmetic Unit

The arithmeti unit is connected to the store of a computer so that,lt
P

can receive a copy,of information from any word of store'ortransmii the t!.'

result of,ia calculation it performs to replace whatever may be in any

fied word of the store.

Arithmetic units ekitain the electronic circiaits to perform arithmetic

operations on data. They may also contain one or more special storage devices

called accumulators4 . (SAMOS contains one accumulator, see Figure 1-/.) An

accumulator is usedto hold temporarily the result of an arithmetic operation.

9

K. 4.44fir

Arithmetic
Unit

Figure 1+.7- Relation of,Arithmetic Unit- and Store'in

SAMOS

1-3'

Tpe arithmetic operations'that SAMOS can do include replacement of the'.
°content of the accumulator by the content of a specified word of the store,

and vide versa (generally'Calied :"1,oading". tHe accumulator and "storing" the

accumulator). It can perfoi'm addition to.the accumulator, subtraction from

the accumulator; multiplication'by-.the accumulator, and division into the

,accumulator. In each case the resUlt'remains in the accumulator. All the

more 'Complicated arithmetic operations, (like a square root or the sine of an.

angle).are built up out of these basle4 operations.;

Each operation has an operation code which the computer has been

designed to interpret. For example, LDA is the SAMOS operation code

meaning,' replace what is'in the accumulator by a. copy yf what is in the wok,

the address of which is givenin trie'instruction. This meaning is usually

'abbreviated to "load the accumulator."

If a person speaks.precisely about what is happening in a computer, he
,tends to become involVed in .Lich'complex (and hard to unravel) sentences as

in the last paragraph. For this reason,"aestructive read -in and non-

destructive read -out, are generally assumed in speech; and writing. Moreover,

A distinction must often be made between the addrps of a word (a iBostk-,office

box, number) and the information contained in the word (a letter in

office box). If L stands for the. address of'an arbitrary word

store, one popular way to indicate the content of L is with parent

That is, (L') regelentsythe content of address L. With this notat

the arithmetic operation codes are defined as in Figure 1-8, where

the address given in the insti;idtfOriand "4--' is to be read as ,flis

replaced by.'!'
"-

Operation Code
(positions 1,2,3),_

Meaning Result

LDA Load thefaccumulator (ACC) 4-(L)

STO Store e accumulator (L) *--(ACC)

ADD Add t 'the_accumnlator, _ JACC),4-(ACC),t,_(L)

SUB Subt*k from-the accumulator 4 (ACC) <- (ACC) - (L)

MPY --Multiply .by the accumulator (t--) 4(ACC) X (L)'
DIV Divide into the accumulator (CC) 4--(ACC)/(L)

Figure 1-8. Basic SAMOS arithmetic operations

t441?
Of course, to get anything done, a series .of instructions has to be

executed.

13,

17

1-3

An historic example
ti

Suppose we have been told that numbers are stored*in addresses 1066,

1492 and 1776 in SAMOS and theft() solve some problem we should multiply'

.=
A

' (1066) by t1492) and to that product add (1776). We are also told to

store the result ofthe calculation in address 1965,

In accordance with what we have been told we would write:

Instructions Comments (or meaning),

pos.l -3 pos.7-10

LDA 1066 load the *cumulator with (1066)

MPY 1492 multiply (1066) now in accumulator
by (f492)

AnD 1776.4_ add (1776) to the product in the
accumulator . :

STNS /1965 store the result in 1965

1

Notice'that we are not, as yet, saying where the instructions are. We merely

assume that the, tpistructions will be executed from top to bottoEl in the order

they appear.

S

The Control Unit

The control unit is the part of the computer ddsigned to deterMine which

instructis tO be done next, to decipher the operation indicated by that

instruction code, and to establish the connections between electronic

circuits carrying out the operation (recall the stored program concept). The

control unit of SANS Can be thought of 48 containing three specialized

storage devices; the instruction counter, the operation register, and the

address register.

;
I

Operation
Register

'Instruction

Counter.

Address
Register

i

'FigUre 1-9. 'Registers in the control unit

14

18

1 1,

1-3

To begin with, the instruction counter is set to show where a program

is to begin, that is, it contains the address of the first instruction to'

be performed, Thereafter, every time an instruction is used, the instruction

counter goes up another notch. The instruction counter contains the address

of the next,instruction to be used. As soon as circuits -have been set up to

bring a copy of that next instruction to the control unit, the instruction

counter (by
)

automatically having one added to its content) "counts" to the

next instruotion to be done. You can see that instructions will be used in

the sequence in which they appear in the words of the store. Therefore,

SAMOS is called a sequential computer.

A copy of the operation pare (Positions 1, 2, and 3) of the instAc-

.

tion'to be executed is placed in the operation register and a copy of the

address part (Positions L. 8, 9, and 10) is placed in the address register.

What is in the operation register is used to connect electronic circuits in

the arithmetic unit (or whereter else needed) in preparation for doing the

particular operation specified. \-\What is in the address register is used to

make a connection between the particular word in the store and the arithmetic

un4t. Then the operation is executed.
,

After execution of an instruction, the instruction counter io again used
1.%

to bring the next instNetion to the-control unit and the cycle is repeated.
14;

It is worth pointing Oa that if SAMOS can execute 100,000 instructions.1
pei second (a reasonable rate),'all the instructions in its memory at ohe

1time would be used up in a tenth of a second unless some way were found to

break the sequencing. Moreover, eventen thousand instructions could no do

a simple th\ng like finding the absolute viaue of a number without some

to select the sequence of"iristruCtions to be used.

The cycle of using
h
instruction after instruction in sequence can,be

q,
broken if.the address in the instruction counter is replaced by a differe t

address. SAMOS has several instructions (generally caled branch instru

tions) to effect this replacement. N:R will mention just three such inst

tions in Figure 1-10', (refer to. Appendix A tOr more

ay

a9

.4)

I

,1-3

Operation Qs:A
e

.,

Meaning.
Result

t

laRU
, t

Execute next the instruction at L. (IC) <--L s

11LT

.

.

,

Halt the machine. If the start

button *is pressed, execute the

instruction at L. .

Halt and (IC) <-1,
s.

.

BM1
.

.

*.

.

,

,
If the 4ign of the accumulator is

negative,, execute the instruction

at L. Otherwise BMI has no
---,,_

if (ACC) < 0,

(IC) <--L other-

wise (IC) <-- (IC)+1

effect..

'Figure 1-10. SAMOS branch instructions

.

An absolute example

In this example we will store in address 1234, the absolute value of

the number A, which is in address 4321/ Suppose the instruction counter

starts at 1001, the address of the first instruction of the example.

1
Inst. Location Instruction Comments

;

0--

1001

1602

1003

1004

1005

1006
, .

LDA

'BM1

BRU

SUB

SUB

STNS

4321

1004

1006

4321

4321

1234

load accumulVor with the number, A

is A negative?

A is already > 0 if, you reach this

instruction

this puts a zero in the accumulator'

-A in accumulator
.

store IAI

40
The firat4hstructton brings the number 4i to thelaccumulator and the

7%.
instruction counter advances to 1002. The sign of the accumulator is then

tested by the t instruction. If the sign of A is negative, something

will hag° tote done to change it. In this case; BIC Will cause 1004 to

71."be inserted into the instruction counter; otherwise the instruction Counter

advances to 1003. Ifthe instruction counter reaches 1003,_ we know that
. .0°-

A is non- negative.and its value is to be stored in 1234. Therefore, 1003

contains an,unconditional branch instruction to 1006 which contains the

instruction to sire the contents of the accumulator in 1234. If the

tSAMOS, like all computers, has buttons so Mkt people can start and stop
(and otherwise control) its operation.

e

16

20

instruction counter reaches 10104, we know that A is.negative. The

instruction in 1004 subtracts A from itself--a convenient way to put

zero in the accumustor--and the instruction counter advances to' 1005.:

There the negative of A is placed in the aOcuUlator, the instructio
.

counter advancing to 1006 which is the instruction to store the'contents

of the accUmulator in 1234. Pou can trace the sequence of instructforis
,

4

performed in either case as'follows:

Instructions performed

1-4

p.

If A < 0 If A > 0

1001 1001

1002, 1002

.1004 : 1003

1005 1006

1006

1-4 Numbers and Other Characters

In developing computer programs we will need to know how the data dealt

with in problems is represented. The SAMOS Computer (see Appendix A) treats

every number as though it were an integer. .When two numbers.are multiplied

they are treated as integers. .When one number is divided by another, the

quotient is treated as-an integer, the remainder;(i.e., the'fractional part

of the quotient) being discarded. This is ailed integer

of integer division are given in Chapter 2. Hoy then can

or get answers that are not integers? The easiest answer

division. Examples 4

SAMOS use numbers

is to require the

person writing a SAMOS program to-multiply each number by factors of ten so

that the machine can perform operations (e.g. division) without discarding

desired digits. This amounts to positioning (or shifting) the nibbers in the

computer word so that-the machine, ip doing its integer arithmetic, is "fooled"

into keeping digits that can be reinterpreted:as being in the fiactional.part

of anumber._ If two mumbers -are to be-added or subtracted the programmer-

should be certain that each contains the same number of digits iuterptetable

as being in the fractional part. This is the easiest. answer.but itis a

complicated task for the programMer to dot

Notice

point is, in

developed a

that the main difficulty is in keeping track of Where the decimal

a number. Long ago, mathematicians, scientists, and/engineers

convenient scheme called "scientific notation" for positioning.

I

1-4

. 0, . .,
-...

.
. .-

the decimal point. The method is to write every nunber,with a decimal point '.

after the first non-zero digit; then each'number is multiplied bf a power-of .,

ten sufffdlcient to. position tht decimal, pbint Properly.

For example:

Usual notation

3.1415926

-27.3.14

..0008761

. -:`

Scientific Ltation

3.1415926
\

10 0

-2.7314X .02
. 1

. .

8.761 x lo

vr.

Many computers are,6nstructed so that they can
C

use numbers in a,form.

similar to scientific notation.,. Numbers that are represented inside a

computer by making use of the exponent idea are said to be represented in
....r..

floating point form. A computer constructed to use numbers in floating ptint
e

formhas different instructions-for adding two numbers in floating point .

form and for adding two numbers treated as integers. Even if a cdMputer

not constructed to use this (floating point) representation, standard pro-

grams for each type of computer (from a "library of programs) can be_ used

to perform arithmetic with:olumbers in a floating point'form.

Use of floating point numbers, that.is,

makes it much easier to do arithmetic since

-position.of the decimal pOint for 'you.

numbers in floating point form,

the computer keeps track 6f the :

4

Our comparison of eger form and floating point form can be made more

Ai.explicit,by reference to gure 1-11 which shows these two forms for rem-

senting numbers in a given word of memory.'
ri

(a)

Memory
Word Length

SigniExponent Precision Part

flQating,_point form

1

Sign Magnitude;

integer form

Figure 1-I1. Illustrating two forms for internally

representing ;lumbers:

(a)

(b)

o

Units -

pgsition

used for "real" nu bets including' integers

used for integers Only'

18

,

ko.

1-4

Notice that numbers with-Tractional parts cannot be represented in the

integer form as long as the units position is agreed to be fixed at-the right.

end of the word. On the othei hand an integer can be represented in either
form.

_
To represent an integer, the integer form seems like the natural choice,

because thii. form has a fan simpler structure. Circuitry, for performing

'arithmetic on numbers which ate coded in "an integer form is less complicated.

It works faster; and is cheaper tci build. On the other hand it is wprth- .

noting that integers which are)too large to fit in a given word length in
.the integer4form can be adequately approximated in a floating point form .

Which'uses the same word length.'

To explain this point, get us imagine we have a storage word which holds

-deciinal digits. Assume the word lenh is suffi4ent to hold eleven 'decimal

digits, but that the left most of these is preemptedtfbr storing the sign
of the number. Well show it in the figures below as 'El to indicate that

either sign may be present.

1 2 3 5 6 7 8 10

A word containing an integer

In the integ r form, the largest integer which can b represented is

+9999999999. Now one way to employ this memory word in a,floating point form
__.

t
.might be'to treat ositions 1, 2 and. 3 aa_the exponent part, using

position 1 as a ign for the exponent, and to trea. positions 4, , ...,
10 as a sey6n-posi ion precision part.

,..,

-:.

'

s1. 2 3 4 5 6 7 8 9 10

111J J.
N'

exponent , precision
part - pak

A word containing a floating point, number

4

Let us further agree that the precision part always represents a nuMber,;
4lying betw4en .1000000 and .9999999 (i.e., to sevti digit precision).

With these rules the numeric examples mentioned earlier are shown in

, Figure 1-12, as they would appear internally.
,

1$
19

,23

1- + I 9 9 I 9 I 9 I 9 i 9 I 9 I 9 I 9 1

.01,- 1-4

J
..

EXTERNAL :

.

INTERNAL
...,

+4.

Number Computer notation Floating point fort

3.1415926 .31415926 x 101 ++ 0 1 3 1 le 1 19 2

0

-273.14 . .-.27314 x 10' - + 9 3'2 7 3 1 4 0 0

.0008761 . .8761 X 10-3 + ..10 3 8 7 6 1 (7.0 0

.

Figure 1-12. External and internal representations of numbers

I
. ,

. OW

You can see tOat the largest number which can be coded in this floating
L.

4point form, i.e.,
4 P

S 1 .2 3 4 '5 6 6' 8 9 lo

would represent

+.9999999 x lO

g

which4s far larger (although frith not as.many digits of precision)- than can

'be represented in the integer form.

It would seem that any calculation using real numbers could be done by

computers using the floating point representation. This is not really true

(we will come back to this point, particularly in Chapter 6) because the

part of a floating point number followingthe decimal point (called the

, precision part) is of limited length. Nevertheless, in computer jargon, we

speak of "integer" numbers and "real" numberS in algorithms even though not

all' of the integers and not all real numbers can be represented in a computer.

The examples of the last few pages make use of decimal numbers because

these are the numbers we are accustomed to You must not think that floating

point forms are limited to decimal numbers. Many computers, including the

most powerful, represent numbers in binary form, and by using the same id
4

outlined above, perform arithmetic with binary floating point numbers.

Computeis that perfOrm arithmetic, with decimal numbers must somehow

store the decimal digits in magnetic cores each of which can store a bit.

How can this be? Are you familiar with anyway to group bits so as to-%

represent the decimal digits? There are litcrally hundreds of way. s to

accomplish such a representation. The most ious way is to use the binary

fOrms of the decimal digits directly.

Dy

4

20

,J

V

1-4

Decinfal Diet, Binary Form
A

Decimal Digit Binary Form

,

.

0

1,

2

3

4

,

,

.

0000

0001

0010 .

0011 .e

0100

d,
.4.

,

t,

5

6

7

. 9

i

, .

,

-

'S

'

0101

olio

0111

'1004

1001

Figure 1-1-3. Binary forms of decimal digitS
1;

Since each decimardigit is coded into binary form, this representation

is called binary coded decimal (or BCD, for short). TN code for each

decimal digit takes the place of that digit so that, for eample,

365 is.coded as 0011;0110 0101

and 1965 is oded as 0001 1001 0110 0101

RepTesenting all kinds of characters

In general, n bits can be used to represent 2n different things.

Thus 3 bits could be used to represent 23 = 8 4things--not enoughfor the

ten decimal digits. Four' bits giye 2
4
= 16 'combinations,ehough-forhe

dectpal digits with some left ovel.., If we want to represent not only the

decimal digits but also the -.26 letters of the alphabet, wewould'need at

least 26 + 10 = 36 combinations. Five bits gives 25 = 32 combinations

which are not enough. Six bits'are required to Rrov.i.de 2
6

= 64 combinations

with plenty of Combinlions left over for other cha.iacters such as $, =, X,.

blank space,.etc.

A popular type of coding places two extra b is to the reft of the four

bit binarK forms of Figure 1-13. Thia,,;type of c ing is displayed in

' FigureIN 14.

4

-.

Character
.

Code Character Code Character Code Character Code
-0

,, 1

2

3
4

5

6

7

4 8,
),
Y

.

004 0000
0010001
0010010
'004 0011

0010100
00 0101
00:0110
00:0111
00:1000
oo:lool

n
A
B.

C

D

E
F

G
H
I

01

01

01

01

Ala:oloi
01:0110
61;0111
olil000
01:1601

I

1

0001
0010
0011
0100

K
L
.M
N
0'

P
Q
R

.

,

;

_ : _

10.0(1t8

lo:colo
10: 0011

10:0100
10:0101
10:0110
10'0111
101000
10;1001

,

oolo .

1000
1001

,

S 111

T 11:0011
U ii:oloo
V 11:0101
W 11;01:104

/ X 11:0111
Y 11
Z

a
11

Figure 1-14.

0

11.1.1111

Six it code frequently used t0 'represent both'

digits and alphabetic characters
21

,. 4

1-4

The Input Problem

Numbers, letters:' and othet characters ofithe data must be introduced
. .

(read) into the computer through some inpht device. If there is a "first law

of computer'inpUt",it probably goes snmetiling like: "We alwayTh-want ta.make

use of more characters than can be recognized by the available, reading device."

One will quickly discover, in fact, that we woula like even more characters

than can be encoded with six bits. Typically,'restrictions on the set of

recognizable characters result either from theextra-expense of building a

device that can recognize more characters than seem to be really necessary,

or froM the fact t at e aditional set of characters'for common input '4I _.

devices antedates computers.

In the banks, account numbers are now commonly printed at the bottom of,

checks. In printing, an ink is used containing a ferrous comRound'which can

''"-'".----bp-Tregnetized. When magnetized, the printing cHe4acters can induce a current

in a reading device and the individual, "funnIclis4pes of the printed charac-

-ters induce distinguishable shapes of Turrent. This system,o"magnetic ink

character,rec,ognition" or MICR, was particularly developed for the gee of
A
banks where numeric coding is adequate. To avoid unnecessary expense, the_

character set has been limitO d to digits and a few extra characters used as *.
a,

,separators.

The electric typewriter is often used as an input end-output device for

computers directly or with punched paper tgpe as an intermediate step. This

device providgs the possibility of machine recognitio'n of aU the characters

(upper and lower case) found on a typewriter. The limitation therefore is

the character set normally found on a typewriter. Unfortunately, because of

expense,,all of the available- characters are not always used.

Typewriters, teletypes, and other machines with similar keyboard% are

coming into common use to communicate with computers at afdistance. All this

amounts to is making a phone call to thtcominkter. Since dozeps.of typewriters

can now be connected to aalngle computer,:,the pet of characters that can be

used for-inp,lit is more often becoming the typewriter

-4*

Punched cards
..

,.The keypunch is'a.machine that has developed with the use of punched

cards and punched card tabulating systems for more than .60 years. In

tabulating systems it proved to be uneconomical to use more than the digits

And capital letters together with a few so,called,"special" characters. Here,

the. special characters are even a "recent" addition of .the past thirty-years.

22

G

1-4

When a key is struck on a keypunch, a pattern of holes is produced in a
column of a card. These holes can,,subsequently be identified by a card read-.,

ing machine. The codes used in key punches in most common use today are

designed in this way: To produce the plus or minus sign or one of the.ten

digits '(0, 1, ..., 9), a single heapit punched in one of 12 rows of the
card. To represent the capital letters (A Z), they produce'a combina-

tion of two holes (see Figure 1-15). Note`that of _12 X 11/2 = 66 possible

two-hole combinations, only k1126 are used (really 27 are used because -the

sPecial character "/" has a two -hole encoding). Beyond this-there are

eight special characters encoded as holes punched in a column. (How.`
many three-hole combinations are possible?)

e keypunch has been in common use to transmit information to a co ter
bectus of the relative permanante of the cards (they can beused over an
over), and because the indiv;dual cards can bereadily reordered or replaced.

However, the usual keypunch encodes only 48 characters (including no punch
for a blank space). Fortunately, equipment manufacturers have paid consider-

able attention to the problem of providing a larger character set at reason-

able cost. Currently several devices (typewriters, keypunches, and fancier

machines) which encode "extended character sets" are being marketed. In the

absence of these newer machines unavailable characters are usually.coded as

combinations of those available (e.g.,' A conceivably could be used to imply
, lower case a). /

4-012345679 ABCKFGHI JKLMUOPGR STUVWXYZ .$g=)40
111111111 1

1

0000.0100000000000
1234$$IttnTIOUNISAD
11111111111111111

22222221222222222

333333331333333:33
=0/

4444444441444464

5555,5555551555555

66666666666166666

7 7 7 7 71 7 7 7 7 717 7 7 7

Illi11111 1

000000000000000000000000011111111100000llp0000d0000l0000000ti0000
**Annnpnnnnmemnupnnunomnamounmimmuslisampumostuamosomunni'nnmannlinsi
11111)111111.1111111111111111111)1111111111111111111111141111111

2212222-222122212222222,22212222222222222222222222222222222222222

33313333333331313W33333,3133333331,310133333333333i33333333333

.6-C414444444444414644-4444414446444444444411114444444444444444

5555515555555555515555555555155555555555555555555555555$5555555

66.666616666666666-616.66666666616666666666666666r6666666666666666
777777717777717771717777777 7'7 717 7 7 7 7 7 7 1,7 7 7 7.1 7 7 11 7)7 1 7 111,111111'24

stsilessisesellaseasealletresessessielseetseseasfilaslifIlestIllitestessitettsu
1599999999995919919999999919999999999919999999599199999999999999999,999999999995
st34ssittwinumalonxtvonnnunnnuNunpnxnumeocawsuoansemumaympunsucamesserustionnnmannnnw

Figure,1-15. 'Filch card dodes;,for'a typical character set

,
.

.

This_cOdinpcheme isralso referred to°as Hollerith OtydeTrn hog: of

Herman Hollerith, aaate-nineteenth century statistician who developed the
,

d.,. .. , ,,-.ta-v+

4. 23

72,

1.

,1

1-5

irst punch card sorting and tabulating equipment.

;)

1j5 Algorithms

Now that we have learned something of how a computer works, let's fincl

out how to prepare a problem for computation. One of the striking things

about computers is that all they can do at one time is one fairly small step,

like add to the accumulator, or store the accumulator. To lae.able to do any-

thing more complidated the computer amst execute a sequeniorf instructions.

A sequence of instructions 'for 6 computer is called a computer program.

A more general name for a sequence of instructions to solve a problem,

whether with a computer or.not, is "algorithm". An algorithm actually has

characteristics that a computer program ma0not have--although most useful

computer programs do. Any arbitrary sequence of instructions coUld be a

computer program but an algeoritlun must, in addition, give an answer,to a

problem within a finite'number of steps.

More formally, an algorithm is any unambiguousiplan telling how to carry

but a P riceas in a finite number of steps. You should be able to think of

lots of examples of algorithms; some examples could be tte instructions for

assembly of a model airplane, or the score for a Piece of milsic. Each of

these examples is a set of instructions designed to predGe- a specifireaUlt

and each comes to an end.

1-

. A characteristicOf algorithms that has already been mentioned but4mrst

be emphasized is that tie step-by-step plan must be unambiguous.= We cannot

tell a computer to "either Add or subtract." ;"'Rather, we must say--"if ,

specific, detailed conditions are satisfir, then, add; if these4Decific

conditions are not met, then subtract. " There can be no_ room for,doubt as

to the meani4 of an algorithm..

Algorithms that are useful with computers frequently have Sevqral'oiher

characteristics. First among these is generality. For example, it, is'not

very interesting (or useful) to know that the greatest common divisor of 12

and 36 is 12': t, is far more useful to know a step-tip way of finding

the greatest common df*isor of any two integers,_ a and b

''he' same is ,true Or-an fill algorithm. For example an algorithm

-to find solution set. for a qftaxaticthe

28

= 0 ---

$.

15 .

should produce answers (or tell us there are no answers) for any values of ai

b and c (4ren for the degenerate case in which a might be zero).
'It

. YA seconcicommon characteristic of useful algorithms is repetition.
I: J[i

)- -
, r 4 '' '

Instructions for ssembly of'a model airplane often say "repeat Steps :7 to
12 for the r fit wing as for the left wing." ,n a musical composition,

special symbols are used to tell a performer to repeat a part e piece.

In the same way, we will find it extremely useful to repeat series of' steps

in.a computing algorithm. One reason computers are so useful is that useful ,

algorithms do depend heavily on repetition, and the compute; will repeat the

same steps tirelessly and without complaint.

Using Alggorithms in Solving oblems''' +,

ihr
S

ometimes we connect e word "problemlwith a question on an examination

orj homework assignment. J More generally, "problem" means any. situation in

w ich'thereia a differer e between what one has and what one wants. If you

don't have a date for dance, and you want a date, you halpaproblem. If

youhAre to planAa/Megu for- the school cafeteria and you -want to include

nourishing foods that people like without costing too much, you have a problem. r.

Problems can be separated inlo real-life'proble:Ms like,.those-above and
: .composed,problems like.those in most textbooks. Alg6thitAms are important in

Pelping to solve both kinds of problems but real-life problems like getting,

planninga date or -a menu often have a very large number oP possible, choices*,d,
to,be made in- findinea solution, making them hard to analyze.. You can

probably write down-a series of stepS you would go through in getting a date

but if someone-else could interpret your instructions in a different way, or

if your instiwtions woulaet get a 'ate every time, you have not written an
.

algorithm:

BeSides e-large number of choices to be made in finding a solution,,

real-life Trobl s are hard to discuss precisely because we tend to use our

native language, English, and this has its own built -it ambiguities. So to'

discuss algorithms we must consider all alternatives and express our instruc- p
ir------

.
4

4tions in such away that they cannot be misunderstood. To see what can be -

done, consider,w.,,problem with which you may
P
/
already

,.

be familiar.
,,,

EXample 1
4')

SuppoNe you are given eight balls all of which look alike, but you are

told that one ball is heavidr than-the others which are identical. EqUipped

25

29

1-5

only with balance, identify the heavy ball ix no more than three-weighings.t

First,, we will introduce symbols

/Babel the balls A, B, C, Dy E, F,

correspondingly be a, b, c, d, e, f,

of steps to solve the problem. .

to avpid the_ ambiguities of English.

and H. Let theWeightssof the balls

g, and h. Now we can_write a series

1 . If a+b+c+d<ei,f + gs+h junp.to Step 9.

2. ' If a + b < c + d' jump to Step 6.

3. If a < b jump to Step 5.

4. Thd hedvy ball is A. End of calculation.

5. The heavy ball is B. End of calculation.

6t If c < d amp to Step 8.

7. The heavy ball is C. End of c= elation.

8. The heavy ball is D. of calculation.

9. If e + f < g jump_to Step 13.

10. If e < f ump to Step 12.

11. eavy ball is E. End of Talculation.

. The heavy ball .s F. End.of/Cdlculation.
"..31

13. If g h .jump to Step 15.

14. The heavy ball is G. End. of calculation..

15, The heavy is H. End of calculation.

Studying these fifteen steps1)you will find that the probleM is solved in

all cases and misinterpretation of the steps would be difficult if not impos-

sible. Therefore this ism algorithm. Still, the fifteen steps seem to be

a complicated answer tewhat appears to be a simple problem. Moreover, the

fact that only three weighings are required in any particular Case is not

obvious gince there are seven possible weighings listed in the algorithm. It

would be interesting to have a' means to clearly distinguish between the seven

weighings of the algorithm and the three sequential weighings done when the

_algorithm is 'executed.

44 There is an elegant diagrammatic way to display yp solution to this

problem. First, use a colon 10 to represe the comparison operation of

weighing on the scales so that, for example a-kb : c + d means place

balls A and)1 on the left pan of the scales and compare with balls C

and D placed on the right pan. Enclose each bomparison'(or other step)

in a box and adopt the convention that if the weight on the left of the

tMore complicated problems of this type can be stated and easily solved

with the methods discuSsed here.
I

3-0

comparison isaieavier we will "leave" the boX on the left; if the we ht on
the right of tha-)Comparison is heavier weNill')Ileave" the box on he right.
With these.cohueritions, a-4iagram of; the earlier fifteenkstep algorithm is

+ b + c + +' +

End of calculation

Figure 1.!16. Diagram of algorithm.to find a single heavy

ball from a set of eight balls

Here'we'haVe a clear display of Ve three sequential weighings needed to
select the heavy ball and the plan-of the process stands okit. This example

-aloriei should be enough motivation to further study, diagrammatic represents- AV
tions of algorithms. In the next several chapters we will develop a diagram-

matic language (called the flow chari,language).for
represeniing algorithms.,

Just for the fun of it you may` want to try to find diagrams for the

f'o'llowing related problems:

1. Suppose you are given eight seemingly identical balls and you. are told

that one ball is different in weight (either heavier or lighter).

Identify the ball and whether it is heavier or lighter in three weighings'.a
Yr

2. Suppose you are given twelve seemingly identical balls and you are told
that'one ball is heavier than the others, which are the same weight.

Identify the heavy ball in/three weighings.

,r
A

27

1-5
N

.

3. Suppose you are given fourteen seemingly identidal balls and you are

told that one ball is heavier than the others, which are the same weight.

'..IdentiO"the heavy' ball in three weighingS:
1 . ,

) t. j 1 , / i J ,

4. Suppose you are giveh twelve seemingly identical ballsand you are told

that one ball is different in weight (either heavier or lighter).

Idezitify the ball and whether it 5.6 heavier or lighter in three weighings..

Example 2

Fora'second example to illustrate the generality desired in an algorithm

let us turn to a moil mathematical problem; that of finding the real solution

set of the quadratic equation\

ax
2

+ bx + c = 0

for any set of real numbers a, b, and c. You know that (as long as a is

not zero),:

if b
2

- 4ac < 0 there is no real solution,

if b
2

- 46.c = 0 there is one real solution given by x = -
2a ''

..
....AO ; ..

.

if b
2

- 4ac > 0 there p. two real solutions which are:
.--

-b + 42 - 4ac -b -,42 - 4ac
xl - , and x

2
-

,2a 2a

I

Since we want an algorithm so general that values of a, b, and c

could be numbers radioed from Mars, we will look for,pathological cases.

What if -a . 0? What if a = b = 0? If a = 0 and ,h4 O, the equation
t * .

degenerates into a linear equation With,one real solution,
, .

If a = 0 and b= 0, then if c = 0, any real value of x. can satisfy

the quadratic quatiOn, or if c 0 theye is a contradiction and the three

numbers, cannot e coefficients of a quadratic equation. In cOther of these

cases we wouldbe ,justified in saying that there is no-interesting solution.

Are there any other special cases? If a 0 -and b = 0, the quadratic

formula applies but we can make the calculation shorter by recognizing this

case separately, then xl.= and x2 = tic- provided c/a is

negative. These special cases are summarized in Figue 1-17.

28

1-5

it-

a = 0
.

a AO"

1) = 0
i

no interesting solutions xl =, 7 clnd x2
-c t
--
; a

b 0
c-

x = -
b

,

usual rules applY,
k

.

Figure 1-17. .Special cases in solution of quadratic equations

Now letls'write down a list of steps to dd this,calctlation:"

1. If a 0 jump to Step 5,

2. If b fro jump to Step 4,

4

3. There are no interesting solutions. End of calculation.

4. One. solution, x = -o/b. End of calculation.

5. If b # 49 jump to Step 8,

6. c/a > 0 jump to Step 11,

7,. Two solutions, xl = and 'x2 = -477 . End of calculation.

8. Calculate discriminant = b2 - 4ac,

9.. If discriminant > 0 jump to Step 13,

10., If discriminant '= 0 jump tel. Step 12,

11. There are no real solutions. End of calculation.

-12. One solution, --x = -b/2a..1End of
t

calOulation.

13. Two solutions,. xl + lidiscrimimant)/2a and

x
2

= (-b idiscrimifiant)/2a. End of calculation.

Read this carefully. Are any situations not covered? Can you misinter-

pret these Instructions? This is an algorithm but it is not, in fact, the

whole story concerning the solution of a quadratic equation. In Chapter

we will return to the quadratic equation'to discuss other difficulties that

this algorithm could encounter and to discover how this algorithm can be

repaired to account for those difficulties.

To help-,find a diagram for this algorithM'we will adopt the eonventionH

that lines leaving a boX in which a comparison (with =, /, >, etc.) takeS

place will, be labelled T and F for true and false. Then Figure 148.11;e0

a diagram for the quadratic equation algorithm.

29

a.

1-5.

F

a

0

No

Interesting
Solutions

5

b Q.

6

c a> 0

.7

T

8
disc = b -4ac

1 9
fidisc> 0 k

10

disc=0 T

xl=
a

No real
solutions

= -

1.

End of Calculation'

12

x= -bi2a

T

13

Gb+larE
x
1- 2a

-ti disc
2a

Figure 1718.: Diagram of an algorithm to solve -a quadratic

equation

The examples given in this section show that it is vital to use

unambiguous language forms in describing an algorithm. Problems that lend

' themselves to such unambiguous language (generspy mathematical and logical

problems) are those for which we can most easily express algorithms. On the

other hand, real-life problems like planning a menu or getting a date for a
,

dance, can, be broken into step»by-step processes. When me, can express

these processes unambiguously (whiCh we are not used to'doing) and -Olen the

processeaaccount for all possible situations, the soluttOhs to real-life
VW

problems can be given as algorithms.
4.

Ati-eal-life" problem which shole the usefulness of algorithms particularly

well and which we challenge you ttArolve on your next free weekend is The

-,Conedritr on,Camp Problem:

3 3 0 -

1-6
elb

Two men are confined to a cell in a concentration caff.p., Each-day they-

are given one 1 af, of bread. %They then face, the problem of how to divide

the bread so,e ch is satired that hp haft received hisishare. The classic
-ksolutIon is. that one divides the'loaf and theother takes first choice.

Now suppose that a third .1-isoner is put in the cell., How then are they
to divide the loaf? Your solution mustPbe such that if any prisoner is

dissatisfied, it will be. in consequence of his own greed or poor judgement.
e

It must be proof against the collusion or illogical behavior of others. he

best solution provides'an algorithm which is easily extended to any number

of prisoners.

1-6 Comments on--Languago,

Language is a means of expressing and communicating our ideas. In

computing we want to be able to communicate not only with people but also

with computers. To communicate with people we,gormally use"the "natural

language" we learned as children. Still, in specialized topics, people have

always found it useful to devise specialized jargons and languages.

' To communicate with a computer we have to be able to express algorithms

unambiguously in a form the computercan understand. We have already had

a taste (it Section 1-3) of-what is involved in writing instructions for a-

computer. in "machine language." Since each model of computer has differences

in design and these shot' up as differences in each machine langnNsig,'a

'Tower' "of Babel"'situation exists in Which a program preparedin
o
machine

language for one computer cannot be used by another computer.

In Section 1-2, we remarked that a significant recent development has

been the exploitation of procedural languages,,spet/ofically designed for

the expression of algorithms in a form computers can understand, essentially

independent. of a particular model of computer.
70. , "

The floW chart language developed in this book is a formalization of

the diagrammatic way we displayed algorithms in ,Section 1 -5. You will

discover that the flow chart language.helps us to develop, display; and

discuss algorithms in an unambiguous N1

In light of these remarks, the task of using a.computer to help in

solving a problem can be separated into three distinct steps: that-of

reducing our problem to a sequence of elementary steps; that of J'formiLization"

4

1-6

or converting to a formal language; that of transforming from this formal

language to machine, language. Each of these steps tis a translation from one
1

L,

form, Or language, to anbther. Consequently, diagram of the translation

process Wduld"lbok like Figgie 1-19.

ENGLISH
paw CHART
LANGUAGE

PROCEDURAL
LANGUAGE,

0

Figure 1-19. Actual Translation Process

MACHINE
LANGUAGE

The first translation involves making a diagram called a "flow chart"

for the problem. Each box of the f ow chart corresponds to a'task to be

performed in the order shown by arr ws between the boxes (as in Figures l -16

and 1-18). What is written inside each box is supposed to explain the task

but need not be a detailed description._ In fact, relatively complicated

proems ve often *lied by subdividing tasks into simplikr, more easily

understood sub sks. At each stage the problem solution is described"by a
I

flow chart. lanations of tasks inside the boxes become mpre specific and

more formal as we approach a description of the final solution. This book

is chiefly concerned with the ow chart language and its use as an aid in

discovering prOblem solving roce6ses.
,

The seconT translatimil expresses the flow chart in a formal language

which is in gmneral use such as FORTRAN or ALGOL. It is the puxpose of the'°

FORTRAN and ALGOL language supplements accompanying this text to teach yOu_.

'chis second translation process,

The third translation is from one completely formal language to,another

such language. You can imagine that given two languages which have strict

rules of expression,and are free from ambiguities, translation from one to

the other ought to be performable by machines. This is in fact the cage.

,..you have, say, an ALGOL program for your problem, the last translation is

made by feeding your program into the computer along with a "compilee (.or

translating) program to produce a translation of your program into machine,

language.

The purpose of the discussions just completed was,to eXibte the relation-,

ship of oUr activitieg' in this book to the general problem of feeding a

mathematical problem into a machine. With these words we are ready to proceed

with the main business of the rest of this book--that of constructing flow

. charts.

-

4 1 -6

The material in the. language supplement is arranged roughly in parallel

.rith the subject matter cover In this text. For bapter 2 it is preferable,
, I

!

read
I 1 1 i {,

1,1
to e the, chapter in its entixety before studying the/corresponding chapter,

' I in your tInguage manual. yor.subsequent chapters it will be feasible, unless

'otherwise indicated, to read a section of the language supplement just, after
. .

. -

you have read the correspondingly numbered section in the main text. You ate

warned to save all the flow charts you draw as you work exercises in this

book because coMputser problems in the lane supplement will refer to them.

V

4

I

33_;

4

,,1

!

0$

Chapterl'2.
4' 1

017PUT.AND.ASSIGNMENT'i
-fp

2-1 The Flow Chart Concept

an this chapter we learn about three basic kinds of procedural steps'

called "input,"'"assignment," and "ouipUt." Vitth,these three it wiWbe

possible to develop some simple computer programs and'in' this way gain a

progressively be'.Ver insight for "talking to" or communicating with a

computer.

Suppose the instructor hat posed the following simple problem:

"Given: A = 5.0, .B = 10.0, and C = 3.0 .

Find: the%lengthl, D, according to the formula suggested Ii

in Figure 2-1."

q o

D= 42 + B2 + C2

.Figure 2-1. llagonal o;,Reetangular Box'

0
The proNm statement might be rephrased in Ta le 2-1 as a simple,

three-step process.'

(4

3513
8 -

r W

I

2-1
I.

Table 2-1 .

',1"rocedural phrasing

3

1 Corresponding

I phrasing.,in'
Ir original statement

1. Input (i.e,, define) the specific values) Given A, B, C

of A, B, and C.

a. Using values for' A, B, and IC defined

in Step 1, compute the value for the

expression yA2 + B 2 + C 2 ank then

assign this value to D. A siorthand

way of saying all this is:

42 B2 4..c2

3. Output the value of D.

D= 42 +B2 +C2

Report the value of D.

.

This simple sequence of three events, each of which represents an action

a computer can perform (provided it receives an a ropriate command in a

language it can understand), may be expressed even .re concisely with a

glow chart as shown in Figure 2-2.

11

A,B,C

INPUT!

+ B2 +

ASSIGNMENT

3

D

OUTPUT -c

, Figure 2-2. Flow Chart l'or Diagonal of1Box

6

We will usually make it a point to number each box in a flow chart with

little numbers placed close to the boxes. It is then easy to refer to any

,specific part of the flowch0t, The numbered boxes in Figuye 2-2 represent
1

Commands to a computer whi, Add be worded as follows:

r.

4t"

3 ON 36

2-1

I
1. Ihput. ReadspPelf,gvalues to be assigned to variables A, B, C

fro a punch' card (or other input device) and transfer these

values to a pre-assigned location:in the cOmputertb memarycT.,

'storag*

2. Assignment. Obtain the specific values of A, B and C from

their storage locations. Compute the corresponding value of
42 B2 C2 and assign this value to D. put this

value in storage at a location associated with the variable D..)

ift

3. Output., Obtain the calculated value of D from its storage

position and type or print it on a roll of paper.

[For clarification it should be notel that there are.two kinds of input

associated with the computing process--inpUt of data, which is what we are

discussing;4and input of the program (i.e., the set of instructions or

commands). Program input will not be discussed in the main body of this

text but at any time the student feels the need of knowing how this, input is

handled or knowing about any aspedt of the actual operation of the machine

in more detail he may refer to Appendix A.]

The student has probably noticed that nowhere on the flow chart are the

values 5.0, 10.0 and 3.0 assigned to A, B and C. This is character-.

istic (witecate7tain exceptions to be noted) of flow chart writing. We ordinar-
i

ily do not give on the flow chart the actual numerical values to be assigned
Ato variables but rather.indicate how they are to be computed or where they

are to be found. One reason for this, as will be seen soon, is that we will

use the same section of a flow chart to indicate many repetitions of the same

calculation but with different values assigned tolpe variables.

Thebox labeled 2 in Figt'e 2-2 is called an assignment step because

we assign the computed the value of y/A
2
+ B

2
+ C

2
to the variable D. How-

ever a great deal more than this is going on in this step. This box contains

the indication of the basic computation of the problem which in fact consists

of several steps. We will seel4later how to write more detailed flow charts

breaking similar computations into their component parts.. Such .exercises

will help us to see the details or the "fine structure" when we need to. It

might seem more reasonable to refer to such a step-as the second in Figure 2-2

as a "c utation and assignment" step, but we will adhere to the conventional

nomencl ture of "assignment."

A

2-1 m.

1 .

Later in this chapter we shall provide discusSion and clarification of

input step also

card to A, B and

"assignment, step"

the idea of assignment. For now we just obierve that our

involves "assignment." There we assigned the values-on a

C. Input always involves assignment but the nomenclature

will be reserved for assignment of values which are eithpr computed,,Or obtained

,from, storage.
4

The output step. identifies by name the one or more variable" whose

values, now stored in the computer's'memory, are to ye. written out or dis-

played for us to see.

The phrases "read a specific value into storage" and "write out h,

specific value from stowage" are often used in speaking about input and

output processes. Modern computErs are equipped with a variety of input

devices which, can read, data supplied through appropriate input'inedia.

Computers at the banks, for example, have input devices which read' ccount

numbefs printed on checks when these numbers are printed with a special

magnetic ink. Aen typewriters are attached to computers, the data may be

supplied simply by typing it.

One of the most popular input devices is the card reader which reads

punch cards, so you can see it is natural to adopt as a flow chart convention

the silhouette of a punch card

to suggest the input process. The

list of items being read 1Se shall

'Jcall the " p t list." So to c
co e the representation-.4of --

a specific input step, as a flow chart symbol, we insert the input list within

the figure, as for exatplet

4
f*

A03,C

Likewise, some of the most common output devices Ke line printers and

typewriters. These provide us withoTrinted answers in a familiar and readable

form. The conventional form representing output is the silhouette

-41
Sv

2741

which suggests a piece of paper torn from a typewriter or line printer. Since

the key component of the...output step is the "output list," to complete the
; ; " ''''''

symbol for a specific output step we insert the output list within the figure,

as for example,

In this problem, the list is simply D.

There is one more way in which the shape of boxes is indicative of the

. operations they represent. The circular START and STOP boxes clearly

suggest the round buttons commonly used_.to start and stop pieces of machinery.

STAar

Figure 2 -3. Control,a)tch for Grinding Wheel

From now; on we will use the shape of the box to indicate what is going

on inside it. This is one of the characteristics of the flow chart language.

.3942

2-1

Exercises 2-1

In each of the following eArcises your jgb is to convert the prcblem

statement into a flow chart. You will find the structure of each flow chart

is-similar to that of Figure 2.-2. .

1. The shaded area in Figure 2J

is made up of tiip semi-circle

of diameter DE, 56 square

ACDE and the isosceles

triangle ABC 64hose base is

b and whose altitude is h.

Given b and h, find p,

the perimeter of the shaded

figure.

2. Given a row M and a column N

such that N, find t, the

value in the square for the M
th

row and N
th

column in

Figure 2-5 shown on the right.

(Hint: Notice that 8 = + 2.)

3.

E

Figure 2-4

/ 2 3 4 5

Given the grade average, a for n previous homework assignments, and

the grade 5., for the n + 1
st

homework assignment, find the average

grade,' I., based on n + 1 -assignments. There are three input values.

What-are they?

4 a 4o

Ott

2-2 Repetition

The usefulness of a computer calculation increases if it can be easily

repeated. Even the simple, alMost trivial, process of Figure 2-2 becomes

significant when it is to be repeated a large number of'times. Suppose, in

fact, the instructor restates the original problem as follows:

"Given: A large number of values of A, B, an C; such

as, might be found in Table 2-2.

1ft

Prepare: A taile showing for each set of values A, B, and

(tin Columns 1, 2 and 3 respectively) and the'corre-

..t
sponding value of 'D (in Column 4). Assume the same

formula for D applies as before."

Table 2-2

A B C"

5.o 10.0 3.0

4-3 2.5 4.1

8.5 5.7 -3.2

lo.4 o.4 0.7

6.3 -5.2 , 6.4

..

.
9.6 17:3 2.2

9.1 -7:2 - 3.3

While he task involved may comprise far more work than before, the

essential change to the process is simply that it be repeated. This concept

of simple repetition is Very easy, to express in a flOw Chart language by

forming a loop, as can be seen.in Figure 2-6.

2

+ B2 +

Figure 2-6. A Simple Loop'

41,

. 4>

4

Such a loop will make sense if we think of each set of data as puncled on a

separate card, with the cards arranged in a'stack,' and with only one card

read each time the input step is executed. The flow chart'tells us something

fairly obvious: Instead of halting the process after printing the value of

for the first set of data (along with the values A, B, C), we will

.retu±i to repeat the entire procedure at the input step (Box 1).

The appearance of th oop in Figure 2-6 requires more exact explanation

of the processes represented by our input, assignment and output,boles.

The input box in atflow chart will always have one or more variables

written in it. The bdi can be considered &o refer to a stack of punch,cards,

each with specific numbers appeaz.ing.on it in the positions belonging to the

variables as shown in the flow char,t. (See for example Figure 2-7 below.)

The command represented by the input box can now be separated into its

component parts as follows:

1.- Read tht numbers off, the first card in the stack and put these

numbers in storage locations assigned to the variables appearing

in the input box. If numbers are already stored in these locations

remember that, these numbers are completely erased before the new
I

numbers are put in; computer storage devices have destructive

read-in.

2. Remove tha first card from the stack permitting the next card

(if any) to become the first card.!

3. If a flow chart arrow carries us Ifito an input box and'i't turns

out that there are no cards lefinithe stack then the computation

is to stop.

Without the last part of the above explanation Figure 2-6 would suggest

an "endless loop." Such ;loop would represent" most unsatisfactory algo-

rithm. We now spe that the computation inFiguAE2-6 is provided with a way

to stop; there will not be an infinite loop unlepR there are infinitely many

cards.

2-2

Inside an assignment box we will always put a left-pointing arrow.. To the

left of the arrow we always put a variable. To the right of the arrow will

appear some sort of expression; it may be a clistant; it may lie a variable

or'it may be, as in the previous example, an expression indicatiig a compute-
.

tion. The-breakdown of the command of the assignment box follows.

1. For each of the variables (if an y) occurring on the right side

of the arrow t th6 assignment box, read-out the value from

the appropriate location in storage. This read-out is non-

* destructive. That is, the values to be found in the locations

corresponding to these variables ere exactly the same after

this read-out as before. 'As described in Section 1-3, read-in.

'd is destructive, while read-out is not.

2. 'Once the values of the variables appearing orj the right side

of the assignment box have been read, any computation indicated

by the expressio on the right hand side of the arrow is

performed.

3. Thd value of the expression on the right side is assigned to

the variable on the left side of the arrow. That is, the

result of the computatiorritt read-in (destructively) to°the

storage location corresponding to the variable on the'left side

of the arrow.

As an example suppose that the input'of the process illustrated_b

Figure 2Z8 consists of the three cards in Figure 27 (in the indiicated order).

Thentheloutput will be as in this figure.

54) 10.0 3.0 11.6

4.3 2.5 6.1 7.9

8.5 5.7 -3.2 10.7

Figure 2-7. Sample Input and'Output Data

2-2

so,

The student may wonder whythe.velues of A, B, C should be p ted as

output when they were known at the beginning. Suppose only the last lumn

in Figure 2-7 were printed as output. ,The person reading this output would

then know for example that 7.9 is 42 + B2 C2 for some values of A,

B and C Which he might be able to find If the,order:of the cards has not
(T.

been disturbed, and provided the cards can be located. The value ofcthis.

output data would obviously be seriously reduced.

Exercie 2-2

For the flow chart of Figure 2-6, repeated in Figure 2-8 below, with

the input of Figure'2-7, give the values stored in the positions cor'esponding

' -S/each of the variables A, C and D at the indicated point in the

computation.

A,B,C

(a) At.position

(b), At position

+Bf2+ - A,B,C,D

Figure 2-8. A Sipple Loop

when no oanut has been printed.

when two lines of output have been printed.

(ca At position Z2S when one line of output has been printed.

(d) At position when one line of output has been printed.

47

2-3

2-3 Assignment and Variables

The concept ofi assignment is of fundamental importance in computing, so

we should really subject it to the most careful scrutiny.' Assignment is

quite' different from any concept you have met in mathematics, although it is

similar enough to be mistaken for either "equality" or "substitution." We ,

will explain how assignment differs from.these concepts at the appropriate

time.

r4'
As has been stated in the previous section, we always assign values to

variables.

A variable in mathematics is lesually a letter which has not been

previously identified' as a constant. A letter followed by one or several

integer subscripts is also permissible. In computer/language we allow a

great deal more leeway in the symbols which may be ised as variables. Some

samples are:
069

B, C, X, Y

and such descriptive combinations of letters as:

DIST, AREA, LENGTH, ARGGH,

or such strings of letters and digits as:
,0 9 0

9

51. A3, X2, Y3G5, R3C4 .

r

There are two principal reasons for.enlarging our list of variables to
.

inclulitthese strings. First,
..

.the list of symbols availablg to computers is

usuallYlimir6d to upper cgse Roman letters There are no'Greek letters.and .

. a r .

,
usually no lower case l'ptters. We just do not have enough letters available

for use as variables, Second, using a descriptive combination.of letters as

a variable is often very helpful in reminding us how the variable is being

used.

We have a special attitude toward such unbroken strings of letters and
0

digit's 4arting with a leteer.' We regard them as being connected together to

forth a band new symbol, somewhat like handwriting. We think of symbols

above asibeing written as follows;
4r

I

DIST

.R3C4

4.8
.4

e

a 4

2 -3
. r

'sot

/
The occurrence of punctuation, operation symbols, or parentheses breaks the

spell. The above attitude applies only to strings of letters and/or.digits

commencing with a letter. Any such string of characters will be regarded as

a variable unless there has been a specific statement to the contrary. From

this point of view an expression like XN is not consideredto contain

either of the variables X or N but rather to be a brand new symbol.'1n.

other wordy we insist no variables should be .considered tobe part of another
,

variable.

Now we are:able in a few words to explain the use of variables in

computing and the idea of assignment.

In any\computing problem, there corresponds to each variable used in
a

that problem\ a location in the cOmputeris storage. BY assigning a number to

a variable w mean simply reading the number destructively into the storage

cor esponding to that variable. In evaluating arithmetic expressions

a variable is to be treated as a name for the number in the corresponding

storage location. The number in the corresponding storage location is re-
.0\

ferred to as the value(or current value)of the variable. During the, course,

of a computation many different values (perhaps even millions) may be assigned
A

to a. given variable. Thus it will not be meaningful to speak of the value'of

a variable without specifying the time or, more precisely, the stage of the

computing princess. But once 'the stage of the process is specifiedl the value

of the variable is uniquely determined. (See, for example, the exercise at

the end of the preceding section.)

A storage location may be hard to visualize. If so, here is an analogy

which will not lead to error. _Consider that to each variable there corres-

ponds a wooden box. To make the Correspondence clear we engrave on the boxes

the corresponding variables. (But remember that the variable is a name not c

for the box but for the number inside.)

I

Figure 2-9. Three Boxes with Identification

49 46

2-3: ,'

To assign 2.5 to theyariable X, we open the box labeled X, dump out the

contents and put in 2.5. We will speak gor a while in terms of,-,these boxes.

Assignment may be done either in an input step or in an assignment step.

When, as in the example of the preceding section, we come to the input box,

,B,C

we empty out the boxes labeled A, B and C

the values punched on the'proper input card.

a

and fill them respectively with

You will remember that an assignment bok has the fprm shown in the
-zt

following figure.

---L4;1 VARIABLE EXPRESSION

\
Figure 2 :l&. Form-of an Assispient BOx,.

A left-point ng arrow is used toloid Confusion with the many uses of right-

pointing arr maihematfCs.'

Immediately we see some inad sible forms for aisi.gnment boxes as in
,

Figure 2-114' 4 ,,.. ..

-:

f . '
4. 4

3 1-7

.4

2

At
1

1TA- H
ea 2:

, vi , ,

t . :.,,

Figure 2 -11. Inadmissible Assignment Boxes

The reas9n that these,assignment statements are inadPf.ssible is that a con,'

stant rather than a variable appears to the left of the arrow.

Another inadmissible assignment box is shown in Figure 2-12-

47 0

Sv

- .

'1

2-3

7)

B2 - 4x A x C4-5

Figure 2-12. Another Inadmissible Assignment Box

r'

ain the expression.on the left is not a variable and we cannot assign any-

thing to it. 1

Now we are ready to examine some admissible assignment boxes. The

simplest form,

X 4- 2 Ho-

1S-interpreted: Dump out the value in the box 'abeled X and put in 2.

We hasten to remind the student that assignment is not apa.1A.t., Some

beginners erroneously read lX 4-,2 as "X = 2."' Then, later in the Process
.

they may see X 4- 3 andetAink, "X = 3." Combining these two statements

they have 2 = 3 which points out the confusion. Of course if we see

X <- 2 and later X 4-3 we remember. that the number 2 is cleared out

of the location associated wish 'X before 3 is put in. Thus-we do not

imply that 3 . 2 but merely that 2 and 3 were consecutive tenants of

the location belonging to X.

Now conqg.der the assign nt statement:

X 4- T

This statement does not mean Go through all he formufaa,involving X and
,

Meplace I(by T. 'This is nother way in whic beginners go wrong._ Such
. .

an interpretation does not y gld Correct results.

What the above assignme t statement does mean is the following: Go to

the box labeled T and read the value contained therein (but do not alter,

48
51:

2-3

this value). Empty out the box labeled X and put into it the value read

out of the box labeled T. As an example, suppose the values of ,Ai(and T

were 5 and-7 respectively before the command X T is carried out.

After this cotmand is executed the values of X and T will both be 7.

An assignment statement we frequently see is,

To execute this command we go to the box labeled I and read the value

contained therein. Then we add 1 to this value. Now we empty out the

contents of the bqx labeled I and put in the value just computed. As an

example, if the value of I was 7 before the execution of this command,

'the value of I will be 8 aftlr the command is executed.

This last assignment box can be thought of as an "updating" rule (if

I represents the date). Assignment steps of this kind are often used when

the incremented variable is being used as a tally or counter.

As an example or this idea, .suppoie that in the flow chart of Figure 2-6

withthe input of Figure 2-7 we, wish the lines in the output to be numbered

in order. Figure 2-13 is a revised flow char achieving this result.

0 1

A,B, .+B
2 +C2 I,A,B,C,D

4

Figlop 2-13. ReviseaFlow Chart for Problem of Preceding

Section

495

a.*

2-3
O

The "counter," I, keeps track of the number of sets of data, A, B, C,

read in to memory and used to compute D. We begin by assigning to I an

initial value of 1 (Box 0). Each time we print out the resUlts, we incre-

,ment or "update" the value of I (Box 4). Notice that the value of I will

be printep along With the values assigned to A, B, C and D each time the

',,,s0tput step (B§,k3) is executed. If the input of Figure 2-7 is fed into the

II process of Figure 2-13 then the output will be as in Figure 2-14.

1 5.0 10.0 3.0 11.6

2 4.3 2.5 6.1 7.9

3 8.5 5.7 -3.2 10.7

fr

Figure 2-14. Sample Output Data from Preceding Flow-Chart,

A

In Chapter 3 yo will see how the same updating step.

may be used to'control a repetitive process like that in Figure 2-6, but here

we are using this step only to keep track of or to "monitor" the repetitive

'process.

Let us now make an improvement in the box we visualize as corresponding

to a variable. From now on think of the box as having a.window in it. All

read-out will be done through -this' window. This will eliminate the danger

of altering or destroying the number in the.box by our reading process. To

avoid confusion with input, output and assignment boxes we w ill from now on

refer to these wooden storage boxes as "window boxes. "
o

Figure 2-15. The "window box"

53
,,:50. f.-

WINDOW

2-3

. .

The window box with the letter X gn .kt willbe opened only

I ,..e

1. during an input step when X in the input box, oTi.

2. during an assignment step when X- appears on the left side of

the assignment arrow. 4

d4

Thug
i

a window box d.s opened only when reassignment is to take place. Once a

value is assigned to a variable, its corresponding window ,,sfwill henceforth
* . ,

never be empty.

The following two assignment commands are easily interpreted.

Read through the window the value in the box labeled T. Compute the

_square root of this value. Empty out the.value in the box labeled T .and

replace with the computed value.

, DISCUMINANT 4-B2 - 4xAkC'

Here we read the valueof, A, B, and Using those values we compute

B2 - 4xAXC. ow we read this computed value (destructively)-into-the box

,labeled DISCRIMINANT.

You may find it helpful to think of the'work of a computer as being done ,

by three .people, the "master computer" and .two assistants called the "assigner"

and the "reader." When the master computer wishes to assign a value to a

variable, he-writes the value on a slip of paper.- He gives this slip of
A

paper to the assigner Sindtells him which variable to assign it to. The

assigner finds the appropriate window bat., empties out the contents and puts

in the slip of paper bearing_the new value.

When the master computer wishes to know the value'of a variable he calls

the reader and tells him which variable to look up. The reader goes to the,'

,appropriate window box and, looking through the window, makes a copy of the

value inside the Took on a small pad of paper. Hejhen returns to the master

55

4

44,

/
1'

2-3

computer and gives him the sheet of paper bearing the.copied values

The "master computer%has a master, too.*, It is you who write the
*

, algorithms which he must run. An algorithm will be poorly formed if, in

carrying it out, the master must send a "reader" to ilwindow box before

pot

sending an "assigner" to that same box. Why?

0 '

Exercises 2-3

1. The following is a restatement of Exercise 2-14 Number 3:

Given the grade average,' OLDAVG, for ri previous homework assignments

and the grade, GRADgo for the n + 1
st

homework assignment, find the
4 ,
new average, NEWAVG, based on n + 1 assignments.

Convert this problem statement into .6 flow chart with a structure

similar to that of Figure 2-6.

2. Compare the above problem statement and your'solution of it with the

ertiesaement and_s year solution to that one. Sri -eh flow chart

would convey more meaning to you after one week, one month, one year,

if, you were to glance at each one without looking at the corresponding

problem statement? Comment on the lesson that 18 to be learned here.

3. Suppbse we modify the'problem in Exercise 1 as follows.
If

The
i4
new average grade for n +41 homework assignmenti to be assigned

snot-to NEWAVG, but tor OLDAVG. Redraw the flow chart for this,case.,

Why is this a reasonable thing to do? ;

4. The instructor began keeping two pages in his gradebook for each class.

bn Page 1_ he recorded the actual scores or grades for each of the
rs

homework assignmerits. This page isnit.shown here. On Page 2 he

recorded the new cumulative *grade aveagee, column aftercolumnoi'they

were computed following the grading of each assignment. Page 2,is-
/ ,

f

illustrated partial) detail below.

52

55
C

Q

Name

Abel, John/

Baker, 1114

Chary,1Smiley

Thompson, Bill

Williams, Ted

2-3

Cumulative Grade Averages,

CUM 1 CUM 2 CUM 3 ... CUM 7 cum.8

79.0

83.0

54.0

81.5 .

84.5

64.0

83.0 ...

84.o ...

67.0

title

83.0 81.5 84.o ...

81.0 83.o' 80.0 ...

77.1

83.4

...'71.2

83.1

84.6

_1. Note that each column shows the average based on one more sconei

an the previous column. Thus, after 3 scores, TiM-Baker had an

;,..'1/average of 84.0. After T. scores, his.average was 83.4. ,.

To compute each column we imagine the instructor follows a manual

/ or computer process based on the flow chart you just developed in
,

/ Exercise 3. Nov suppose, the grades for the eighth,homeWo4 set are

/ 1

John Abel 91.

Tim 'Baker

Smiley Chary 82

0

18

Bill Thompson 88

Ted Williams 87

What are the input data values to compute column CUM 8 entries fOr

JohnAbel,:bmiley Chary and Ted Williams?

5. After some experience with this grade recording system the instructor

felt it no longer necessary to maintain Page 1 information showing the

individtal grades. Having the series ff cumulativp averages seemed

adequate-for him. (On only rare occasions did he need to look at an

indiAridual grade). In your opini as the instructor safe in droWpg

Page 1 from his records? Explain.

6. Develop a flow chart showing the process by which any desired grade

can be Computed from P6ge 2 information alone.

2-1+

We have to take a close look at our mathematical notativo_and we commence

the scrutiny in this section, focusing our attention on those rather vague

"expressions" on the right hand side'of assignment boxes. These expressions

ustially represent an indicated calculation and we will refer to them as

',"arithmetic expressions." It should be noted that the term "arithmetic

expressick" has a larger scope in computer work than'in mathpmatics.

Although our usual (every day) mathematical notation ip very useful and
... .

flexible and quite adequate for our mathematical needs, it.is not suitable

fo mechanical reading: This is what we mean when we saj that ordinary
5ii

mat ematical language is not a "formal" language. Applied to arithmetic
i

'expressions this means that we cannot write dow sets of rules for:
4

k 1

1. determining whether or not any arrangement of ...symbols

constitutes'an aritimetic,expression;

2. telling how to evaluate any arithmetic expression we may
,

*-- e

be given. .

. ,....--t.

.f .

And yet, with a feF small changes in our 'mathematicalno-tation,the
/

language''of arithmetic expressions is,,eonverted into a language c;ipagle of

Wd7indi-cate--;;That-the-sa-c-haqgeareghtrzive the formal

rules for evaluating,expressions; after these changes have been made. Part-
s . .4

of the rules for determining whether an arrangement of symbols is an arith-

metic expression (that part, concerning detailed study of the use of paien-

thtses) is left to Appendix 2.
.

v '4 ,This discussiOn of the modifications necessary to formalize mathematical

language should be of considerable help to you'in your proramming work.
I

Most of the programming languages ybu are likely to 'be studying are based on

everyday mathematical language.
4*

a "rationale" for the departures

in those programming lankuages.

The material of this section should,provide

fromeveryday Mathematical usage encountered

Some of the "reforms" proposed in this

section we do adopt in-the flow chart language. Others we do not. The one

not adopted do, however, provide us with an alternative way of writing things

if problems'in readability occur.

A.p.umber of years ago at a large American university, an entrance eiam'
. .

contained the quest/9;11

-

"/ /
Simplify

sinx

tanx

,

4

2-4

One student ,gave as his answer:

si

to

The prbTessors involved in the grading of the test had a good chuckle over

thiS\unexpected misinterpretation of the problem.

Unexpected though it may have been, still there was nothing ridiculous.
A

in this answer. Presumably the student had not studied trigonometry and

according to the rules learned in his algebra course his work Vas perfectly.

correct. Re had no other way of interpreting sinx but as

, r

sXiXnXx.
If the problem had been

.
Simplify

abnx
cdnx

there could be no alternative to the answer

"ab
cd

;The siudenkhere we Usini.a-rule which he believed to be permanent and

'unchanging; but, alas, it had been superseded.* anpther rule. In,fact, it

may not have been entirely\uperseded. Suppose we were dealing with-a problbm
f

. .
not involving trigonometry n which* 4.

4- *-
I

and x '

were variables. !Alight we, not then regard

es denoting

sing

.

sXiXnX.x?
- '

' °Consider.-the frustrating expression
,

.

1 a, 1 b 1 c 1 ..
_ -

Which doesit denote,1

?.

Lal XbX 14c_l or a X tb 1'X c

55'
5a

..

2-4
IA

Acco 'rding to our usual convention of using juxtaposition to denote multip/ica-

tibn, either of these last two expressions may be written in the form

lalblc I. Yet if b is negative, these expressions will in general
s

have different values.
,,...;

These examples show that the meaning of mathematicai'expressions is

sometimes ambiguous'and may depend on context for correct interpretation.

In the first example the use of StIxtaposition for multiplication is the

culprit... It the second, juxtaposition conspires, with the indistinguishability

ofleft and rightabsolute value symbols to rob the expression of its meaning.

We hope that we have not given the impression that mathematical notation

is unsalvageable. Ih truth, practices current in everyday mathematical

notation which may lead to ambiguity, or difficulties of formalization, are

few in number: We lit the "reforms" needed or helpful to insure absolute
, 1
,,,

1..srity in the mathematical langUage of expressions. These reformg will be

used throughout this section, thus obtaining a language rather like a program-

ming language. When we return to ordinary floW chart language in Section 2-5,

pnly the first and fifth reforms noted below will be retained.

1 1. Aban4On the-14oractice of using 3uxtaposition to denote multiplication

and instead use the operator symbol "X." We will do this in flow ..

I
4

-1-arigt

2. Special functional notations cause trouble because, in giving

formal rules for readirig, it is necessary to'give a special rule

for each suchnotation: 'To avoid this,replace these notations by

such notations as ABS(X) for lx) 'and SQBT(X) ,for Vt. In .

fld,chart language, we will continue to,write 1x1- and Jz since.

the human reader generally finds them easier.

3. Abandon off-the-line notations because they strike a death blow at

any hope of a simple formalization procedure if the part occurringI,
.

bff the line-is allowed to have variables in it. Substitutions can

then carry farther and farther off,Ghe line, giving rise to numerous

types of difficullties. We adapt here the notation

xt 3 for x3".

In flow chart language we will stick to superscripts.
i

:5 9

56

24.

4. Abandon use of "-" in three different senses: as a binary sub-

traction operator in "X - Y"; as a unary "taking the'negative of"

operator in. "-X"; as part of 'the. mane of a negative constant in

5. 'Embrace function arguments in parentheses. .We will also do this in

the flow-chart language except in the special notation listed

under (2).

6. Adhere to the usual conventions regarding parenthesis removal. This
is discussed later in this section and also in Appendix B.

Now all the valid arithmetic expressions in our "modified" language can
be generated by using Table 2-3 together with the rule that follows.

Table 2-3
4

Basic Forms o Arithmetic EXpresstons

Kind Examples ,

1. Numerical Constants

ri

17, .0065, 3.14159, .0

-5, L-V061, , -17.62 *

2. Variables

----AREAT-ARSOH

X, Y, A, B, DIST,

3. Unary Operational Form -X *

4. Binary Operational Form' X + Y, X - Y X x Y

X/Y, xfY

**

5. FUnctiOnal Forms sm(x), cos(X)

ABs(x), sQBT(x)
,

r

[The aterisks occurring in,the table will,beexplainecl as we go along.-]
4

tThe three uses of "-" were introduced into mathematical notation in ord
to profit from the confusion. Although they cause quite a lot of trouble
we retain the three minuses., An example showing the three minuses is

GLDLKS - ((-5))
2

binary unary number-naming

Does "profit from confusion" confuse you? It Shouldn't. How were we taught
to recognize ei -])`glance that (-(-5)) is the 'same as A - 5?
Answer--Wheq ye want to simplify an expression we treat all three different
minuses as if they were the dame-Lin the rule that anodd number of them canbe replaced by a single one.

57'

6.0
I'.

-91

2J

In our computing work we will take what may seem a narrolVew of what we

consider to be numerical constants. By numerical constants we mean strings of

digits with or without a decimal point and possibly preceNed'by a minus sign.

That is all; no exceptions. For example, we 4anotsconsider
7

-211:5___--a/iik 3/4

as numerical constants, but as expressions still to be evaluated: indicated

operations to be carried out. Some writers do not permit the functional

forms (entry 5 in Table 2-3) to be.classified as Arithmetic Expressions.

Along with the table goes a rifle for grinding, out more and more

expressions.

RULE: In an arithmetic expression, if a variable is

replaced by an arithmetic expression, the result

is again an'ardthmetic expression.

A slight modification of this rule is necessary in light of the following

Atexample: Suppose in B X X we replace X bf"-A. We then obtain B X -A.'

This juxtaposition of two operator symbols ("X" and "-") is not permitted in

mathematical writing and it is not permitted in most.computer languages

either. We must in this case put parentheses around -A then obtaining

(-A).

One might wish to be able to apply the above rule directly without making

any exceptions concerning parentheses. This result could be obtained by

going-ack to Table 2-3 and putting Azentheses around the basic forms in the-

boxetmarked with a,single asterisk (44. In this way we would always have
.

parentheses tten around negative constants and unary operational forms,

such As

(-5), (-.0091), (-x), (-A).

We are usedlo_having the replacement or substitution in the above rule

more for us than merely produce a valid expression. We will illustrate

th these examples:

Example 1:

If we substitute 3 X 5 .in the expression 2 + X' we'obtain

2 + 3 x 5, which we evaluate accorftngto our usual rules'to be 17.° If, on

the other hand, we evaluate 3 x 5 and substitute the result for X in

2 + X we obtain 2 + 151 which we evaluate to be 17. The twtt4bstitutions

'made4'or X produced equivalent (i.e., "equal-Ialued") expressiont_

. 61

3 x 5 and '2 15.

But now let us look at another example.

Example 2:

If we substitute t 5, for X in the expression

we obtain

2XX

2 x 3 4. 5

2-4

which evaluates to 11. If, on the other hand, we evaluate 3 5 as 8 and
substitute this value for X in

we obtain

2XX

2 x 8

which evaluated to 16. The two substitutions made for X produced the
expressions

of t(
2'X 3 5 and "2 x 8

which are not ednivalcant,

Nedoubt'every reader has spotted the trouble; we left out the parentheses.

In every mathematical use of replacement or substitution in the above rule we

want the results of the two orders 6i-aOing things to be equivalent. This,is

what is'indicated by the oil. maxim, "When equals are substituted for equals -

the resultsare equal." In order to attain this end we put parentheses wound
the 3 5 in the last example to obtain

c,_

2 X (3 .4- 5)

'thus ensuring the. desired order of computation.

We might wish to preserve this property of obtaining equivalent expres-
..

sions through use of our. rule without making special cases concerning use of
parentheses, If We so wish we can attain the desired resuft by again modify-

ing Table 2-3 by putting' parentheses around.the"±orms
in the box labeled with

double asterisks '(**). A

Suppose We were.toput parentheses around the forms in the boxes labeled
with asterisks. Then as we used our rule to generate mare complicated expre,
sions we would fiid many more parentheses occurring than we are accustomed to

59

62

2-4

,,
wrftel For example, we might find

((X,+ (Y X SIN((A +(B X C))))) + (5 X(X + A)))

where we would ordinarily write

X -I-4Y X SIN(A + B,X C) + 5 x (X + A)
4

These two expressions are equivalent because of our agreement on the order in

which operations are to be performed in the absence of1parentheses.

If we were to put all these parentheses in Table 3 we should then have

to give's. rule for removal of parentheses,in'conformity with ordinary usage.

This rule is rather complicated and we do not,feel it necessary to discuss it.

here. (It can be found, however, in Appendix B, for those who are interested.)

There is a wide agreement (exhibited in the precedence table'below) on the

order in, which operations,are to be perforted in the absence of parentheses:

We will assume that you have mastered the art of writing expressions, putting

in parentheses where necessary to indicate the order of calculation. The

scanning process used by computers is designed to use the same order of

calculation. In other words, it performs calculations in the same order you

would. We will exhibit this order_of computation. After tha,l, it will be up

to you to write in such,a way that the computer will carry out your intent.

One last word of admonition: If in doubt whether parentheses are necessary,

kb

2 + 3 x 4

put them in! .

44....you have long, known that in expresSions such as

the multiplication is to be perfgrmed first. We convey this, information by

saying that multiplication is more cohesive or more binding than addition or
...-

perhaps we say that multiplication takes priority or precedency over addition.

This kind of information is.colleCted in Table 2-4. We beve taken the liberty

of using the symbol "t for exponentiation. In te flow chart language we

will still use supdscripts.

ar

0,

6 3 -6°

2-4

Tale 2-4

Precedence Level's for Evalultipg Parenthesis-Free Expressions0

Level Operation Name Operator Symbol

High,

.

Low

.

First ExpobentiAtion ' f ,

Second

.

-'

Multiplication

Division

Taking the Negative

#

X

.

/

-- (unary)

Third

'

. Addition

Subtraction

.

+

-

.

.

(binary)

In evaluating parenthesis-free expressions you (or th computer) first scan
from left to right for operators of the first level.' If noneAre found, scan
(left to right) for operators of the second level. If no operators of he

second.lpvel,are found,- then scan for operators of the third-. level. As soon

as you locate an operator of the type being scanned for, perform the op ration
thItt it indicates. Then remember where you were in the seaming processAlnd

take up from there. (A simpler vii3e to state And ono which could equally

well have been chosen is to restart every scan at the beginning of the

expression.)

We give an example showing hdw this all works out.

Example

The expression is

T -NXki N/D +0xU- T

Tabulated values for tAq variableg:

A D I. N 0 .., T U

2 4 9
t

3 7
.:

9 4

Table 2-5 displays the step by step' evaluation. Littletriagular.
symbols (A) are used to indicate the operator symbol to, be dealt with next..

610 ,
ik

2.4

.11

Table 2-5

Display of Step by Step Evaluation

Example 1

Step
No-t_ Action

Appearance of the Expression
After,,Ehch Step7\ Remarks

.

knitiel appearance

., . .

I- N'x'A-4.N/D + 0 x U - T
. 2

Compute)5;'+N
.

I -,NX a /D + OxU-T No.More level 1

2 Compute N x 8
.

I- 24 /D + 0 x,U - T

.

0

3 Compute 24/D .
. I - + 0 x U - T

N
14.,

' 4 Comphte--0-

x U .

IN\

+ 28 -.- T

001
No more level 2

Compute I- 6
........-

28 -.....!__,

6 Compute 3 + 28 r 31 - t'

.. . AL

7 Comp4e,,31 - T*

4. .

.

.

22 &
,

You may wonder how to tell a unary'minusfrom a binary minus. Do they'

have little tags on them? No, but in afproperly vitten arithmetic expression

X a unary minus can occur either at the very beginning of an expression as in

or immediately following a left parenthesis and nowhere elbe.''A binary

minus, on the other hand, can never occupy such positions.

1f.12

The scanning process shown in Table 2-5 constitutes the heart of the

evaluation proceSs. We now fini4 the description of elElation by explaining

what to do with expressions containing parentheses. A "sub - expression" of

an expression is defined to be any part of the expression included between a

pair of parentheses. For example, in the expression

(A x. C - °D) x E

we see that

A x'd - D

is a sub - expression.

62

110

10-

4.

Tattle 2-6 gives the procedure for evaluating an expression-with paren-
theses.

Table 2-6

Rules for Evaluating Arithmetic Expressions with Parentheses

2-4

1. Scan expression fom left tight for first right parenthesis ")".

2. Evaluate the sub-expression ending with this right parenthesis

according to the rule for parenthesis-free expressions.

(Table 2-4).

3. If this sub-expression is a constant, see whether it is

preceded by a function name, and if so, compute the indicated

functional value.

o

[NOTE: Parentheses surrounding a constant should be deleted if pbssible.

In the scanning procedure the (undeletable) parentheses, surrounding a nega-

tive constant but not preceded by a'functiOn name, should be ignored. In '

such a case this negative constant together with its surrounding parentheses

is to be treated as a numerical constant.]

We must confess that there is one place where our instruction for the

order in which xpressj.ons are to be read gives results not in conformity

`yith usual mat ematical conventions. This is in expressions of the form

AB
C

or At Bt C

;tThat is the value, for example, of

233 ?

It can be either 512 or 134,217,728 depending on how parentheses are

inserted. As you can imagine; in certain calculations tie difference between

these two values'may bd of considerable importance.

The rule given in the text would evaluate

in the order

At Bt C

(A B) t c 116

In mathematics, however, the convention is that

63

2-4

A t Bt C means, A t (B C).

Or ih customary mathematical notation'

AB
C

means

Be sure you are aware of this discrepancy. You can always force your

intent by use of parentheses.

Exercises 2-4 Set A

1. Create a table of "step number" and "action" similar to the first two

columns of Table 2-5 for the step by step evaluation of the expression

((a X X + b) X X + c) X X + d

. where values of the variOles.are

a b c d ° X

2 -1 2 2

41"

O

ti

2. For the expression

.(a b) x (c d)/(e X (f + g))

where values of the variables are

a ' b c cl, e f g ,

'1
2' 3 4 3 _ 2 1

'Create a "step number" and "action" table, as in Problem 1.4,

,

3. For°the expression i..
..0

. °

.

.

o
1...311. X r2-1 4.X //7----.s2 + ;2 X PHI),
.2 .- 0 .. '

%

4,
.

where r = 10, s = 9, a)dePnl = 1.12, write dowix the "action" of ''

.,..

k lb

e
_ .

the 4th, 8th and 12th steps in the step by step valuation.
.co , -,,

41

0

61,,

",3 4.4

4. For the expression

2-4

/la q//77.477F
2

Where p 3, and q = 4, writs! -down tie "action," of Step 5 in the

step-by step evaluation.
,r

,

5. If the expression in Exercise 3 were modified to read

3.14
X rsq - (s x 4;777 + rsq x PHI)2

how many fewer'steps'would be required for its evaluation? Here rsq

presumably is a variable whose value is the square of r assigned in a

step prior to the evaluation'of the given expressibn.

We have suggested no limit to the complexity Of the mathematical exiores-
A

sions which appear in assignment steps. Practically speaking, there is only

tht limit of the eye's ability to'scan and the mind's ability to analyze for'
./

, .

unique meaning.
(

or

or

ome expressions Inte--

1rd

A + B

A +BXC

e

A + B x. C/(2.0 + F)

involve only horizontal inspection left-to-right. Since only one direction

Wespeat of thia,as a one-dimensiOnal or "linear" scan.

These "horizontal"expressinns are really just striniiof characters.

If we can get these character strings into memory in consecutively addressed

positions then the computer can be programmed to inspect and interpret them

as expressions. The rules aff precedeAce within subexpressions which we

studied in.Table 20, then governthe computer's interpretation procedure.

What kinds of expressions can we transmit to memory as character strings?

In a sense, Ue statements,of our procedure, when thought of as,character

strings, are just another form of Input data, so the manner of transmission

a

2-4 .4k.N4

r4(

e (

depends on thetriput media available.; For thekake of simplicity w7
,,)

continue tlassume the punch card is our input medium. However, most of the

ideas discussed below are applicable to other input mediii,'like puncheci

pap%tape, typewriter keyboards, etc.

Figua'e 2-16 shows the'expression

. ,A,±BxCi(2.0 + F)
4

as it might appear on a punched card.'

R B.X C /(2.O f)

I I I. i I II

.00000000004 0010000004000000000000000000000001g000000000004000D000000040000
b 1234567111011Q mestaninmnnu:+mnstimpunulsmumnoma4uouvonsol usm1iuustelimapanyusi10ennme4nionn
111111111111 71111111111111 1111111111111111111111q1111111111111111111111111111

2222212222222122222222222772 222222222223;2221222222222/22222222222.22n2211722222

1313333331333i133'333333333333333313333333333333333323333i401i333141444333313333

141441411114114 4444111411 414141.1411111141 4.1414 44 4 4 /11.41144//1/141111111 /11111

555 5 r5 5 5 5\ 5 5 5 5 5 5,3 5 5 5 51.5 5 5 5 5

C666e6616666666666616666666666666644666666666666666.66666666666666666666666666

1'17 7111:111117 717 7 7 7 7 7 717 177 7 7 7-731 7 7 7 7171-117 77111711 717 117 711717 11171117111117114

11111k1.18111111888811111111111888811111818,-8111811111188888801111111888 Is 888888481.

1991199999999959999999999999
423 4 s1 7 3 ioneemeserinmnnun377u7130p32333435437n3f oev.3.o11oompuupsiuslusimeouuou1'41.11cpun,mennpoi

Figure Punch:'card with, an arithmetic expression
t

Each column of the card contains punch information or is blank;

no holes. The input device, when properlY.activated, automatically transfers'.

the information on the card to the'computerts memory as a string of charaoters.

...Figure 2 -1I indicates two ways this information might be'stored in eonsecu-
,

4

tively add Assed positions.

*

. .'
f

..,-.

1The character set shown here is not identical with thatoof Figure 1-18.
J. -e

0,: , .

..

c9 66

+ B-x C / (2.0

101

A

102

+

103

B

loll.

X.

105

C

106

/
107

.s (

108.

2

109 110

0

111

+

112

F

113

)

114 115 116

a. Characters stored one per
word of memory -

55

A + B

56

, >r c /,

57 58

(2. .+ F)

59 6o

b. Characters stored three per
word of memory

Figure 2-17. An expressionin'memory

From now on, .when we spetik,of a

mean that-the expression, originally

some other-input medium, is examined

of memory where it is stored.;

computer scanning an expression

d.s

11.04tOrli,

we shall

pUnched on'the car or tranSMi d yLa

one character at a time from the section

".

Thus, a left-to-right scan corresponds to a sequential exariiination-fram-=

lowest to highest memory ad4resses-.- In many machihes, characters can be

grouped two, three or more to,each word or address. In such cases a left-

to-right scan amounts to looking at the characteri of one word from left-td-'

right and then examining the characters at the next higher addressjnkthe

same way, continuing word after word until the les4 character has been
0

examined.
0 - 1-

Other expressions like

A-
B

B,

D c. d.
R

-
-,

$1,,

also involve one dimensional inspection. We are. accustomed to rely,on our eye
. ,

__.

for a vaertidat scan, but there is no direct analogy with the punch card unleas

L

11111111111111111100111111.1amW--

to

2-4

1W adopt conventions to convert verticglly-written expressiOns to equivalent 0

horizontal forms which preserve unique meaning. Some possibilities are shown

in Figure, 2-18.

A/B

, Case a

r
Case b

r-

Case c

(G/H)/(R/S)

L__

'Case d

Figure 2-18. Examples of expressions written horizontally

It is necessary to replace bars (), representing division, with

'slashes (/) whenye transforma vtYtically-arranged expression to horizontal

form for, the punch card.

Parentheses may be introduced to preserve the meaning usually clearly

understood in the vertical display. Are the parentheses _usd in Cases ,(b) and

(c) of'Figure 2-18 really necessary? If you are in doubt of the answer,

rey4ew the rules of Table 2-6.

As efpressions become more complex the eye is expected to travel fist in

one direcion, then in another. Expressions like

AxB+ C
D +

Or

A
13- + C x

F x G

are good ekamples. Figure 2-19 suggests how these may be converted to hori-

zontal form. Again, parentheses are employed to reduce the risk of ambiguity.

ixercise 2-4 Set B

1'

Not all the parentheses used in Figure 2-19 'safe necessary. Applying the

principles developed in this section, can you identify the parentheses which

are superfluous?

. ,
;

Figure 2-19. Expressions which may have unnecessary parentheses

68
7 1

2-5 Rounding Functions

° There :class of mathematical functions known as integer rounding

fuh ons which are of Special interest in computing. Our interest 4n
, -

.rounding functions comes from two sources:

1. Every arithmetic operation on real numbers in a computer implies

the use of some rounding function., To understand the effect of

itrithmetic'operations we should,therefOre, be'familiar with these

2. Rounding, properly interpreted, is often a key ?step in the solution

of problems, and therefore, in the design of algorithms. 'What is

meant, for example, by an instruction for half the class to go to

the blackboard? If there are 25 in the class, should 12, la-
21

or 13 go to the blackboard? Remember, in developing algorithms

we must be unambiguous.

An integer rounding' function has a real number for its argument and it

yields an integer value for its result. The integer obtained is, in some

sense
i

a "best" approximation to the given real number. Each ftnction in

this class embodies a different interpretation of the word best. For example,

one integer rounding function (called the "greatest integer function") yields

the value 1 as the best integer approximation to 1.6.

We know from.5marstudy of Seiotion 1-4 that computers often have the

capability to perform arithmetic operations efficiently on real numbers over

, a very wide range when coded in floating -point form (i:e., exponent and

precision-parts). Thth results while not perfect are correct to the last

place. Furthermore, computers perform integer arithmetio,oPerations yielding

exact results provided the integer operands don't get too big. It isc'there-

fore°0 en of great advantage to convert nUMbeRa, stored in floating-point

form, o some integer reprtsentation, and-vice versa. When studying program-
-

pLing 1 uages, such as FORTRAN, or AIGOLLwe viJ be learning Ways to tell:

tie computer how to convert numbers in memory from one representation to

another. Because our flow chart analogies must be capable Of desoribingailly,

computer action, inollding that of rounding, we need a mathematical notation

to express precisely this action inside the boxes 'of a flow chart.

-.

_ .

69

7 9

2-5

The Greatest Integer Function

A particular integer rounding function which is very simple, of frequent

occurrence in mathematics, and of fundamental importance in computing, is the

"greatest integer function." The usual mathematical notation for this function

is

(x)

which is subject to many, but not all of the criticisms of the absolute value

notation.. One possible alternative notation is

GRIN(x)

from GReatest INtegent The usual mathematical notation will be adeqUete for

flow chart language.

The function is defined as follows:

(x) = the greatest 'integer which does not exceed x .

The value of this function can be explained geometrically by considering

xtobeapoint on the nuMbeine. To find [xl. we start out at x and

1. if x is an integer we stay where we are, while

`2. if x is not an integer we move to the first integer to the left.

We see in Figure 2-20 some exapplde

'-2.1 -2 2.1 3.9

I:

-3 -2

In this way our final location is at (x).

(-2.1) 1-2)

I I.

1 2

[-.71 (.7) (24) (3.9)

Figure 2-20

of this procedVre. t,,IThus, the, figure tells us that (-2.1) = -3, while [2.1] = 2.

1,,y0

tNo M'atheeaticien has ever seen the name -'GRIN. Wet just made this up for
our own convenience. Th14 other function names you will see in this section
like FRPT, TRUNK, and ROUNDUP are also just made up for our present
purposes.

ro 7 3
70

2-5

,

We see that fór positive nuMbers the greatest integer function has the effect

of "lopping -off" everything to the right of the decimal point. Whereas for

negative nuMbers the instructions for finding the greatest'integer would be:
1

If anything but zeros appears after the(decimal point) then lop off everything

after the decimal point and subtract 1.

The graph of the greatest integer function (Figure 2-21) displays its

step-like behavior.

Figure 2-21. Graph of y = (x)

.
. .

We also note that fo4 all numbers x, we have (x),< x or in other words,

. for all_ x,
- .

A,

1

.

x - (x) > 0 .

Let us use the' notation FRPT(x) .(for FRactmal ParT,of x) to denote

x = Ex) and let us examine the graph of FRPT(x)' given in Figure 2-22.

, .2-5

4

1-

y

I .

2

Figure 2-22. Graph of -y = FRPT(x)

This graph exhibits the non - negativity of FRPT(x) as well as-its

property of being a eri c function of period 1. that is, we have,

FRPT(1 + x) = FRPT(x) for x. Geometrically, if we look, in Figure 2-22,

at the functional value of a point x on the number line and then move one

to the right, theonew point w511 have the same functional value.

An interesting and important property of the functions :[x]

a property which could have been used ii giving the dOinitiOn of t ese_f;linc-

tions-=is that the equation

4 x = (x] FiTT(X).,

displays the unique decomposition of x as the sum 4 an integer and a non-_

negative-nuMber less than 1., Those students litio haVe studied logarithms

have been using these two functions whether they haVe used the, namesOr Apt.

If x is 'the logarithm of same:number, then (x1';',is its characteristic and

FRPT(x) is its mantissa.

In Figure 2-23 the decotposition of the identity function, IDENT(x)

(dotted), as the sum of the GRIN(x). (solid) 'and FRPT(x) (dashed) 'is

illustrated. At each point x on the x-axis the value of IDENT(x)

'found by adding the values of GRIN(x) and "eheT(x).

N-

0

5

11

72

;31

x

/
4

/
/
/

,/

-3 -2

,2-5

0

siorr.0/'
/

Figure 2-23

' In matbomatical,PrOhlemst we are interested only in the remainder

obtained diViding one integeeby another. ,For example, if we divide

32417 :by 1309 according to the rules learned in elementary schoolp.our

iwk lookd like this

t

21+

1309 321+17
2618
7§-37

1001.

We identify the numbersiappearing here atv
44111!`

dividend 32417
divisor 1302
quotient. 2
remainder 1001

e.g., See Euclidean- algorithm -in Section 3-2.
'1 4

73

7, 6

2-5

and we write

32417 .

In general if N is theedividend, M the divisor, Q the quotient and

theremainder, then

N = Id* Q + R where R < M .

r

This is the "division algorithm" of elementary school arithmetic. The values

of 41 and R are related to the functions studied in this section by

Q = GRIN(N /M) ,

R = M. FRPT(0) .
e.

These remainders are of fundamental importance in "modular arithmetic"

where we replace all numbers by their remainders relative to some fixed

divisor. In telling tme,in hours we use modular arithmetic modulo 12. In

the "casting out nines" method of cheking arithmetic we use arithmetic

.modulo 9. In the oarnival wheel problems at the, end of this section we

encounter' modular arithmetic modulo 4 and 5.

Just about any integer rounding fuhation of practical value, ,i.e.; related

to interesting computer algorithms, can be expressed in terms of the greatest 0:-
":1aP

integer function. These relationships will be discussed later in this section.

For the moment we will furtherillustratethe use of the [x] function with

the following problem.

A farmer in a ." -nt of weakness made a pledge which he now

deeply regrets. The ledge was that he'vouldkeep all his money

in multiples of $20.00, and that if any time he had a residue -

which was less than $20.00 this would be put into an educational

fund for his.-son.

Thus in any monetary transactithr irlaich the farmer receives money, only

the number of twenty dollar bills he receives is of importance, while if he

spends money. the number of twenty dollAr bills he must break is the impOrtant

thing.

Suppose he sells-ibe family cow for

will he receive? First we compute

$75.75. How many twentyhaollar bills

75;75
20.00

or 3.7875

and then we see that the number of twenties is 3.

77

0

Suppose he buys a horse for $87.50, how.many twenties Will he lose?

First We compute (considering expenditures as negative)

-87.50
20.00

Or -4.375

2-5

and we see that the number of twenties he must break out is 5.

For either case it should now be clear that in any transaction the number

of twenties is given by

AMOUNT
[20.00 1,

The amount going into the education fund will be given by,

20 x FRPT
(AMOUNT)

(1
)200'

Exercises 2-5 bet A

1. A small country in Europe has purchased 160,000 tons of grain,fibm the

U.S. It prefers to ship the grain in its only grain ship which has a

capacity of 30,000 tons:. What is the minimum numberof round trips

required?

-2: We now generalize the problem in Exercise 1 as follows. Suppose this 1

country buys grain rather frequently and in varying quantities. 'Further,

suppose it has many ships at its disposal of various capacities, but may

one ship iavailable at any one time which can be earmarked for handling

the gk.ain transport.

Let TONS be the amount of grain purchased and CAPACITY be the

capacity of the ship that is available. An .algorithm to determine the

number pf round trips required is given.in Fi 2:24.

1

4TONS,
CAPACITY

2

TRIPS (--[7°NS
CAPACITY

+

Figure 2-24. At Sea

3

TONS;
CAPACITY,

TRIPS

,'is .this' algorithm "seaworthy "? That is, assuming no

can this algorithm ever produce the, wronganswer?

75' ,
i

error in the data,

+AV

2-5

Approximation by Round-off

-From. the mathematical point "of view, the expressfron

1'
3

is a constant - -a name for a pactil\ar number. From the computer point of

view, this expression denotes a command--an indicated division which is to be

carried out. If the machine encounters it in such a box as

the net result will be that not /?t .333 or .33333 or .333333333

will be read into the storage locatiolibelonging to the variable x. The

number of 3's which'will be stored will depend on the number of digits the

computer has been told to carry ou'Cin -the divide operation or on the capacity

of the storage 19cation. In any case only finitely many digits of the infinite
1 1

decimal representing can be stored so the computer replaces by some

,--approximation; that-le, it "rounds-off"-the infinite decimal., Approximation

by round-off is encountered almost every time we divide or evaluate a function

as well as in many other places. In Chipter 6 we will say more about the

effect that round-off has in computation and also discuss other interesting

sources of "numerical error".

Although we have only been discussing integer rounding here, the rounding

of any real number to the k
th

place (where k- is any integer)_is a process

which 'has as its heart integer rounding. Thus, if we wish to round a carts
.

real number to the thoUsandths place (k = 3), we can adopt the procedure:

1. -MUltiply the give, n nuMbei. by 1000)

(

2. Round the result to an integer, employing same integer rounding

function; '

3. Divide the resulting number by 1000.

ti

Zig4,16,z6Zihe thousandths place.
0

57294.161. 'Multiply by 1000

2. Bound to beer 57294

(using the est Jaeger
function)

-

3. Divide by 1000 57.294

-2-5

We are now ready for a precise definition:

An integer rounding procedure is a systematic method for replacing any

given number by an integer subject to the conditions:

1. If the givki number is an integer it is unchanged;

2. If the given number is 'not an integer then the rounded value is

either the4nearest integer to the left or the nearest to the right;

3. If A < B then their rounded values satisfy the same inequality.

In more mathematical language the above be stated:

An integer rounding procedure is a monotone integer valued

function, F, on the reals satisfying for all real x,

the inequality, IF(x) - xl < 1.

Everything is found in the second definition that appears in the first

except the word systematic, and we are unable to say what that means anyhow.

We see that when rounding a number which is not an integer we Always have/

two choices for the rounded value. We cao_e_lassify_the four_commonestrounding

procedures according to how we make that choice.

1. Choose the first integer to the left;

2. Choose the first integer to the right;

3. Choose the first integer nearer to the origin;

t4. Choose the nearest integer.

The functions giving the rounded' values are all closely related to [x].

These functions are given below. We leave to the student the simple task of

checking that these function& actually do what we say they do.

IL Here the function is just [x] itself;

2. ROUNDUP(x) = ;

11.3, TRUNK(x) = SIGN(x) x fixil ;

4. ROUND(x) + .5].

tNote the ambiguity for numbers halfway between two intdgers. We will select
a'admple formula which works for other numbers and take what it gives for odd -

multiples of 1/2.

itHere SIGN(x) Is defined to be x/IxI unless x= 0 in which case SIGN(x)=, O.

7110541.

2-5

The method of rounding given by TRUNK isdcalled truncation. It can al4so

be4described as "lopping-c1431,p4ferything after thed0imaI point, regardless

of sign. Notice that for positive x, TRUNk(x) and .011gx) ;are the Same.
-

The TRUNK function is employed implicitly In pro ramming languages like

FORTRAN and MAD when converting real nuMbersto integers. The ROUND funtlion

plays An equally prominent role in ALGOL implementations when converting real
e

numbers to integers. The ROUNDUP function.is not important but is included in

these discussions to round out our discussion of rounding.

When calling for tkie division of two integers I and J we quite often.

really want TRUNK(I/J) which is the integral portion of the actual quotient,

I/J. icany programming languages hav special conventions that enake us to

imply TRUNK(I/J) without havini.t bother to write TRUNK. When the quotient

of -I and J 1/ indicated in suc a way that it means -TRUNK(I/J) for

example, by writing "I = J" (as ire ALGOL), we call this integer division.

We usually think of these rounding'procedures as producing appr imate

answers to problems. However, in problems which by yleir very nat e require

-whcae-nuMber -answers, it sometimes happens -that-these roundiag -proeidures--Fe

tailor-made for producing the exact answers required. Such situations are

emphasized in the following exercises.

Exercises 2-5 'Set B

1. It costs an ounce to send an airmail letter. Write a formula

involving one Of the rounding functions expressing the cost of sending

'an air mail letter as a function of the (real) variable WT.

2. A camp director wishes to divide the boys into baseball teams. Give a

formula involving one of the rounding functions giving the number of

teams as a function.of NBOY Ithe noMber of boys). No boy is to be on

more than one team.

In each of the following three exercises; your job is to plot a graph

similar to Figure 2-21.

3. For ROUNDUP(x) from -3 < x < 3.

4. For TRUNK(x) from -3 < x < 3.

5.. For ROUND(x)i from -3 <

, 8 1

78

-

c

6. Graph thi following four functions on one set of axes.

2-5

Be sure to limit

the'domain.of each of.the functions according to the inequality that

accompanies the function.

4
(1) y 7,(x) for -3 <3 x < 3

(2) y = (x) + 1 for -3 < x <

0 .(3)
x = [Y) for -3 < y < 3

At -(4) x = (y) + 1 for -3 < y < 3

-

Determine the values of ROUND(x) when x is an odd mule of
1

8. A game wheel is divided into five equal-sectors numbered consecutively

from 1 in a clockwise manner as

shown in Figure 2-25. There is
,

a spinner whioh rotates on a

shaft mounted at the center of

the wheel.

Let S be the sector pointed

to by the spinner at rest. We noW.

flick the spinner with our fingers

in a clockwise direction. It spins

through m ,sectors and comes to rest

(a) Write a formula involving one of

yen the new sector number NEWS

(b)

(c)

Figure 2-25.

inside a sector, i.e., not,on

the rounding function's which gives

in terms of they original rest,

line.

position S and the spin span M.
.4 I

What changes are needed in the formula found in (a) to mdke it

applicable-for spins in either the clockwise or the counterclock-

,Awise 'directions?

Generalize the formula(s) developed previously in this problem to .*

the case of a game wheel having k sectors numbered consecutively--

from, 1.

79

0 2-5

9. A carnival wheel, Figure 2-26,

has 32 painted' sectors numbered.

s,= 0, 1, 2, ..., 31.

The sectors are divided into 8

groups, 4, sectors per group; In

each group, the sectors are painted

blue, green, red and yellow (B, G,

R, and Y) 'going clockwise.

When th wheel is spun (always

counterclockwi) and comes to A,.

rest, the color f the sector oppo- ,

site the fixed, pointer, R, tells you

how,the game comes out.

Svppose the rule is

. ,

41,

Player loses' 30 points for

Player loses, 10 points for green;

Player wins 10 points for red.

Player twins 30 points, for yelloW.

Figure 2-26

Further suppose that, before any one spin the.wheel is considered to be

at rest with sector number s opposite.the ratchet R. We now imagine

the wheel is spun a distance of m sector'positions. How many points p

will be won or lost for each data pai'' a and 111?. How can we develop

a simple algorithm which simulates repeated plays at.the wheel?'

,
HINT: Your `low Chart should show b'lomp,beginning with a step for the

input of s and m, one or more assignment boxes to compute- p, an

output statement to print p, ando a- return to the input step. One

to compute p,- is to first compute the new sector nutber s after the

spin, in terms of the given (or old) s and M. Then we can compute the

position k (= 0, 1, 2, or 3) within'the grdtp--corresponding to,blue,

green, red or yellow, respectively. (Act6Illy it is simpler to compute

k' directly from m and the old s without firstoOmputing/le new s.)

To simulate repeated spins, return to the input step after printing p. s

.83
80

b

011

2-6 Alphanutherid data

AfUnny thirig happened one day when the master computer sent his robot

the l'reader" to a window box.

with this story--"Tou sent me

value. When I looked through

number--onlY the letter IX'.

2-6

The robot returned, in tears and consternation,

to the window box parked X to bring you its
A

the window to copy, the number, there was no

U
but when f opened,the box to copy the

tuber, there was' no number - -only the letter IV."

Then I went to the boxl,marked Z and, to my'horror again I found not a number

but a letter. This time it,Imi-the letter IN1. dlease, sir, what does _this.-

mean?" '

'Reading this story may make you as confused as the poor robot. We hppe.

not. There are great rewards for those who will grasp its true meaning. We

learned in the preceding,sectitt that computers,can read- and store alphabetic

characters and special,charatters in the words of memory. CoUpled with what

we can recall'froM Section 1-4, it seems that characters like "1", "4", "7",

or like "V, "X", "N", or like l'*", "/ " and' ") " can each be Stored

one or more per word of memory as a special combination of six bits So,itts

entirely possible for a string of characters, day,,1:14", to appear in memory7---,

Whenever you see a daggered section heading, you, can assume the - material is
"interesting, but, if time is short, the'whole section can be slipped without
losfrof ccintinuity, especially during a first reading,

IPTou eind-a daggered 'paragraph somewhere_yethe middle' of a section,
1 it means it's possible to ship to the end of _the section. p

If yltu see, two daggers tf, it meats %he material maY baeven More
interesting, but even more reason-t503-kip it if yoU-are pressed for time.

aiv-

. 01 el,

81

.2.

2 -6.

as(an entirely different pattern of bits then', say, the integer 14. If we

im ne a memory word of twelve bits, then following Figure 1-14,-- "14" would
1 .

be. c ded as 000001900100 while the integer 14 would be coded as

,000000001110. If one makes the mistaie'of misinterpreting 000001000100 as

an integer one would then read it as 68.

How can these facts relate,, to oux flow chart language? Well, for one

thing we shotld be able to see that a window box an store characters az well

as numbers. In other words, a variable X can have arvaluenthat is not

numerical at all but alphanumerical. By alphanumerical we shall mean a value

consisting of some collection of characters made up of those displayed on'the

card in Figure 1-15.
0

Just how many cl;..racters can be stored in one yindow box depends on the

Zize of the boxOr memory word size. For this text,.sincewe arentt dealing

with any one. computer, we wontt be too specific. Letts assume that a window

box can store a string of "sevetal" characters. We will leave it to your

iaQuage.manual or your laboratory instructor tote more specific'on this
.

ipoint.
0

r;

If a variable can,have an alphanumeric value, it must be able to acquire

such a value the same way it can acquire a numerical value, namely as a result

,_of input or as a result of an assignment,step. Having once acquired an

alphanumeric value, it must be possible to outputoit by an output stip".

It begins to appear.that our input, output and assignment boxes must

,allow us to describe computer procedlies for doing things with alphanumerfoal
\

/

as r,s well as numerical data: .
.

\
/,

,

...- .

We immediately illustrate this point by showing a very simple,flow chart

(Figure 2-V), the input data consisting of names, one per card, and the

\
rinted results--a list of name pairs. .

f

8 o .

!;

A

2

B1 A,B A4-B

(a) The flow chart

0 terr J trio 0 r.
(TRACY 0 air? A+BiC (0
DICK 0A+B/C DICK 9 0

(A+B/C" 0 DICK TRACY , 0
Jedie

WM'

(b) The data

a

(c) The printed results,.

Figure 2-28. A questionable process

What do yot imagine is in the window box called A before and after,;

Box 4 is executed for the first time?- To answer thrs, perhaps we had better

step ,through the process once from the very beginning.

When Box 1 is executed, the four letters, "MUTT", are read from the

card and are assigne& to the variable A. Now Box 2 is executed where tlJt,

is assigned to B. Thenvalues of° A and B are printed at Box 3. When

we come to Box 4 we see that at first A hassthe value NuTT", but after

Box 4 is executed, the current value of B which1/4is "Jhre will have been

assigned to A. In answer to odi..original question, A has the value IMP"

before the first execution of Box 4 and the,galue after; If you're

wondering about the third card in the. stack, it-got in there by mistake, but

we deliberately in to iiIustraie how our algorithm takes it in stilde.

Observe bowye have been using quote symbols to describe alphanumerical

values. We don't actually put them on the data card, as you can see in

Figure 2:28(b), and they don't actually appear when printing the alphanumerical

values either--as you can see .in Figure 248(c). 'Nbreoyer, we also ay.
) ,

ff

quote marks around variables, like A..

as 3cnt W111 seel'presen"Owe c haipliVilnumeric

can assign such constarAs to variably. The parallel - is. .; ,- 1 0
"Ffgur? 2-29.

;

"3'

3
OA.)

g" k. 0

onsaints and ,we 4.4

ustrated in,

0

2-6

J

--70-1 J. 4-- 15 Ho..
4
FI* "BLUEFIN"

C_

,(a) assignment of a numerical (b) assignment of an alphanuMSrical
constant , constant

'4

Figure 2-29. Two kinds of assignment

EXample (a) shows a "conventional" assignment of a constant rifle-to a
variable. Example (b) shows an assignment of the charadter string "BLUEFIN"

to the variable FISH. Any quitntity in quotes is to be regarded as an

alphanumerical constant.'
1

We have'come to the end of our parallel. More complicated expressions

to the right oi,the arrow will be considered meaninglss,and' will not be

permitted.)

For example

FISH <- 2 + "BLUtFIrr

or FISH 2 X "BLUE:FIN

or FISH 4--"BLUEFIN" + "REDFIN"
,,

t'

e : ,

1-'are, as far as we are concerned, meaningless. We see,tbat there are
'

only tWt>

allowed forms of alphanumeric assignment s

variable (---v Aable

.and

e'variable (--alphanumerical constant .

It should now be clear; in ppite of all temptation, that the following ;

, are also invalid.forms:

"1.

or

NUMBER -I- "4"

PRODUCT 4 "5" X "5" .
. e

41 , It,

one ,more 4ruCial '06eriatt,On lirust, be made here.

i
,

', i

. Suppose thlt in,,,carrying out the input step,

-1..., ,

1

2-6

a data card like the following arrives in position to be read.

How do we specify in our flow chart, language whether it is tobe.read as a

number or as a symbol? The answer it: if any box in the flow chart contains

,an operation on the data which can be performed, only on numbers, then the

value on the card must be reed,es a number', but if there are no such operations

then:yau marehoose either wry to read it. HoWever, before.the card is read

this decision must have been faged and made. There'is no ambiguity when the
- a

_____-

card arrives in position to be read. ,

- - .
4 4

4 .. .

NaW let us -look at some examples of inputa,nd output of symbols and /

.4numbers'tO illustrate this thought. :Let's first imagine we havePa flow chart,

Figure 2-30, for the input of two \ :VLes, X' and- Y and the%output of their

kia,! Z. Two different data cardsrare presented for input as shown in

Figure 2-31. liV'the st cart is reaSc, everything works fine. The answer,

for input values of 4) and''-3 is 7.1\
-,

t1

- -) . 1
4

'2
,,.

'"

- Figure 2-30. Firatflow chart

?;

i

,

2 -6

First card

Second card

43

. Two data cards

If the second card is,readi what happens? Something is obvio :ly wrong

because we canna add ,"11", to "T". A perfectly valid flow chart Used

with data which can be interpreted as numerical becomes utterIy.meani ess

for data that is clearly not numerical. .

Now let's look at a'second flow chart (Figure 2-32), which inputs two

es X and Y, assigns Y to Z andthen prints the Values of X, Y

and Z. If we vresent the first, card as input, there is no problem. The

computer prints three values, "40; "3"', and "3". If we present the second

card as input, no 'pr em. The Computer prints "R", "T",,and"T".

2 3

Z Y X,Y;Z71 STOP

-

Figure 2-32. Second flow chart

Here then is a flow chart which can be said to be' meaningful whether the

data is -{#e ther numerical (or may be intetptated. ad nUterleal)_,Or alphanumerical...
7

You can loolo at the first flow chart-and pretty cleptly say that it'is

intended for work on numerical values only--i.d., that the window boxes for
7

X, Y and Z ',are expected to store only numbers. box, 2 tips you off to this

crucial fact'. But if you look'at the flow chart in Figure 2-32, you simply

cannot say what thes_of values the window bOxes_should or should not be

--adloW6eio' have stored in them. - _
4

iwe see, then, thatmghe floWchart alone will not always' make crystal

cleat what kinds -o" data are to be assigned to each of the yariables. if you

'feel there is an intolerable ardbiguit er4pilig in here, we can simply agree

-1

,89 86.

to flag (in our flow chart) ilose input variables that are to b- treated as

alphanumeric. For instance in Figure 2=32 we can revise Box 1 as

.,,

0 ; Y

1

putting a .ittle "notch" under eadh variable of the input list whose input

value is to be treated as alphanumerical.

2-6

On the other hand, you may be willing to live mith this situation because

(a) in this case (Figure 2-32) it simply doesnit matter, and

(b) in an actual computer programming language like FORTRAN or
do. L, simple steps are always taken to remove such

biguities. YoUWill see,iiiis when you consult your

language manual.

In any event, retetber.to use quote marks around numerals or character groups'

only when you mean them to be character groups, as in

or --a GRADE "CURLY + Q"

L-H B 4-%

or X "4, +
xrr

and avoid them otherwise.

ti

Chapter 3

BRANCHING AND SUBSCRIPTED VARIABLES

3-1.. Branching

. -

So fad our, flow chart, tools and techniques include input, assignment and

output boxes

and the idea of a loop such as:

A

I-

.

With these tools we have seen how fle may make flow charis for algOritbms which
.if

call for many repetitions of the same calculations with different sets of data.
4.. ,

In this chapter we add "two new tools to our kit. jiteein ccabination

with those we already have, these neWstools'enable us to construct flow charts,
.!

.'

for algorithms of any, degree of ccmrplexity. The first of these is "branching".
.'which gives us the ability to choose a new path (or branch) depending on

whether a certain condition is.satisfied.

Branchingis4indicated fiCflowcharts"by a "condition box," oval in shape.

5

d t 2

3-1

(Ash

ers from all the other boxes we have met in flow-charting. Here is a

non-mathematical analog of the use of the condition box. The University

president has announced that graduGtion ceremonies will take place in the

stadium unless it rains, in which case they will be moved to the auditorium.

flow chart of oux4ehavior in attending the graduation would include

I GO TO,

I AUDITORIUM IL______ -J
I

IGO TO ,

STADIUM
__ --J

To illustrate the use of branching in computation we offer the following.

story boot problem.

Example: The Ruritanian Post Oipce 9epartment has just announced the

re ation that no packages will be accepted for mailing which are greater

than 29:'inches in diameter. [By the diameter of a package the Ruritanians

mean the maximum of-the distances between pairs of points in the package. For

a rectangular box the diameter is the length of the interior diagonal.] A

.wholesaYer with a large number of boxes packed and ready for mailing must now

see which packages coltioly with the new regulation and which will havt to be

repacked. He has no way of directly measuring the diameter but he can measure

the three edges

Acomputer programmer tells the wh lesaler to write an identifying number
- 0

on each package and to prepare for each package a H011erith,card.' The card

is to have punched in it the idthtifyinenumber (N), .and the lengths of the

three edgls (A, B, C). The ccnputer will then,be instructed to,read,these

ctds and to print a list of the numbers of the packages which comply with

regulations. Here is the flog Chart;

4,

;

:r... 0 9 290

40'

you can see, a condition box has two exits. In this way a condition

box

\

1

B, C

4.7.42 4.

< 29

" - N

t

1

4:9 '47

- .:'4
.

Figure 3-1. FIA'chart for poatak r atIlons
... ..

d : , .;:k}

1
i PliS is easily recognilted as a mAdifi,atiOn:oNcither,FIRure2-11 or 2-6.

shOuld chetk that the desired reciult is Obtained, b. list of the packages

1

. ii, 4

lying with the postalogulationi.
, 1 .1,::i , :"."-"'-'

.
'''.4",.:-

i. .,

.......

3-1

*

8'

N

3-1

It will be of interest to know that we could, if required,' replace the

condition box by any of the following.

a

By saying we can replace one box by another we mean that entering each of

these boxes with the same value of D we will always come out in the same

direction. This is another thing for the student to check.

We see, then, that it would be possible to restrict ourselves to the use

of just one of the four inequalities > . But we-do not make this

restriction. We grite our inequalities in boxes in whatever form

comes most'naturslly to us.

A choice is also available when two values are compared byimplpying the

" N " and " # " symbols. For example,

or alternatively,

91 92

.Jlet

S

t

3-1

In our relatively informal flow chart language we permit just about any

form of question or assertion in our condition boxes. As an example we could
insert the condition b6x

,...(ANY MORE VALUES OF
R. A, B, C?

YES

1NO

into the last flow chart to obtain

A

2
ANY MORE VALUE!) YES .0.0,
OF N,A,B,C?

NO

BBC

3

D4- +B+

A,

4
F

D < 29

N

Figure 3-2. The Ruritanian problem solved

In our informal flow 'chart language we could as well have written XOr.

box 1:

1

71_01(ALNY.MORE CANDS
TO,BE READ

NO

93
' ti

3-1

-.

.

..2 N ';'

,............._,-- ,
,\N , . ..

Box 1 is not a logical necessity inyigur 1 2 sinquie adOpted the I.

convention in Chapter 2
I!

iaat an input box s constructed soas to stop the

computation when pothing is left for input. Nevertheless,''it id ood prabtice

Soie reasons for' doing soto include such a box and we shall usually do so.

are: not everyone follows the,above-mentioned convention; if we Wish to us

the calculation of Figure 3-2 as a part of a, larger algorithm, we are all

ready to branch to another task rather than'stopping; explicitly exhibiting
.

the command to stop makes it easier to avoid "endless loopd."

One obvious example of theuseof deciiion is in determining and printing

the larger value of a pair ofnuMbers.. Here are two ways of doing this:

2

11111E10

'(a) First Form (b) Secondjorm
0

. .

Figure 3-3. o flow charts.for
43
larger

. 0 '0

There is aval le lesson to be learned ii Figure 323: Several"quite
i

different flow charts may represent the same prdblei. Eachof these flow charts

may have both advantages and disadvantages relatile to the othel's. One advan-

tage to the first fdrm in Figure,3-3 is that it is 1.)ossilile to determine which

variable has the larger value. By "larger" here we really mean greater thanor_

equal to. figure 3-4 illustrates this idea.

4)(i 94/

a

0

1

Yr'

"A IS THE LARGER. THE

VALUE OF A IS", A

<B

"B IS T. LARGER. THE

VALULOF Bo IS" ,-"tr"

3-1 f

Figure 3-4. Output with identi remarks

In the output boxes * d 4, anything enclosed in quotation markr is

tb be printed just == it appears. Variables not enclosed in quotes will have

their cur values printed.' Indiyidual output items are to be separated

commas.

An advantage to the second form in Figure 3-3 liesoin tlic ease with which

we cangenerilize it to more variables. We give two'flow charts exhibiting

-this generalization.

**-

95

ay

a

se

3 - 1

1

A,B,C-

I 2,

(A <B)

LRGST LRGST

>, 4

LRGST < C

LRGST4--C

"THE LARGEST
VALUE IS",

maw!

.- k

.1

1

A,B,C

LRGST --A

1

CLRGST < B

0

3

(LRGST < 0

"Tide, LARGEST '

VALUE IS",
LRGST

kr

LRGST e-B

LRGST4- C

(a) First Form

Figure 30. ..Two

three values

st

(b) Second, Ford

flow charts for'selecting the largest'of

9'8

J 3-1

The'second form of Figure'375 has an_advantage-over the first form which we
.

cannot fully appreciate 'at this point. This advantage lies In-the uniform
. , .format of tht,connoarisons: We will understand the significance when, We study

4subscripted variables latet in the chapter.',

,A flow chart for the same problem'which generalizes the first form in

Figure 3-3_is_

.4a

A B,C

s A < B

r

0

I t.

im

A
5

"A IS s LARGEST.

THE VALUE .IS ", A

"C IS THE LAR4EST.

THE VALUE 'pi", C

4

"B IS THE LARGEST.

THE VALUE IS", B

,

Figure'3-6. Flow chart'fo? "largest" without use of Auxiliary
.

variables

97 C-

3-1

The next flow chart--the last of this section--shows how a computer may

be used to tally data read from n cards. Here the input variable, T,

represents tIst scores punched on cards.. It is desired to know how many

scores fell in the low range j(0 < T < 50),' how many in the middle range

(50 < T < 80) and how many in the high'ramge (80 < T.< 100). The variables

.low, mid and high act as counters: For each input-value of T one of the

three counters clicks up one notch.. The initial assignment box sets these

Counters to zero, Another counter called "count" keeps a tally of the number

of data valuep read thus far. When count reaches n, which is-input at

Box 1, the printout at Box Il'is executed.

;'

ft&

o

10 0

4

.

4,

...-

"4.

count
low 0
-raid -

- high 4-

o

<80)

8

high-high+1

9

4

low 4-low + 1

.4 10
mid 4-mid+1

count 4- coun+1 I

8
/

YESfount < nl.

)

FigUre 3-7., Illustrating use of two million dollar ccthputer
, for tallying

sT 99

1 i
44

3-1

Exercises 3-1 Set A

In Exercises 1-- 3 us e'the flow chart .in Figure 3-3(b) bUt replac

(mentally) the coidition in Box 2 by '2A B. Give as- output the 4alue"
o

-A pr B selected by this criterion from thft input indicated in the exercise.

I.) A = 7

2. A= B -5

3. A = 10; B = 5 .
. .

4 Work Exercises 1 - 3, but use the condition 'A2 - B < B2' in Box 2.

Draw flow.charts for the processes specified in Exercises 7 - 9. Begin

by reading as input values of b, c, d, and x, then print these values as

output. Then e.omplete the process indicated.

7. If b is greater than c, ' output the value of d. Otherwise, output

the'velue of x.

If d-< c, output the value of c X b + d x x: Otherwiie, output the

value of d = c. Hint: You cannot 13rixit the value of any expression

like c x b + d X x without first evaluating it and assigning 'it to a

' variable.

_ .9, If (b. + c)2 + x2 > b x e X d, output the value of b +.c +b x c X d.
.

Otherwise, output the value of b
2
X c

2
X d

2
and . (b + ci

8
.

10. Prepare a 'flow chart for an algoPiam which inputs 'values of J, m, and

n, determines the sum of J and the larger, of m and n and oUtput8

the values of j, m,,n, and 'the sum: The last step is to return to the

beginning to input more values of j, m, and n.
111 a

11.,, Draw a flow chart to ilipilt values oZ b and c,
.
output both values

Itilmediately, and then perform <the. following:
. . . - ...

: 9 If b = 0 and c i 0. output "bx + c = 0 has no rOot."
. i /

'' 44%* 11 := 0 1 fl.c3 =). 0 AltiA "every_ i.dei number satisfies 11

°
' -c .

a 'et

A.

7

If 'b'7 0 compute the root lof the equation bx + c O. Output

"the roc* of bx. c = 0 is"; followed by the, root,

Fpally, return to the input step fOr more data..
.

,fltv

100-

111

Exercises 3.-1 Set B

3-1

. In the tallying problem, Figure 3-7, we saw how a computer might be asked
.

to examine ana tally a series of values fon T thdt-are input from_data cards.
r

There are.many similar thing's we may want to do with 'a series of, input values.
. 0

./

FOr example, we may wish to sum all thevaiuestof T, or sum the squares of
.T, or'sum the absolute values of T, etc. In the following exercises,

develop a flow'chart for the describedboperation on a series of input values

for Always print some appropriate messagewi4ch identifies the numerical
ti

result that is also to be printed.. The basic ingredients for the'desired
.flow charts can be found by re-studying Figure 3-7;

4

1: -SUM 100 values of T and printout the sum. Call this sum- SUMALL.
. .

' 2.' Sum the cubes of, 100 values of. T. Call this SUMCUB.

3. Sum only the negative values found in 100 input values for T..

Call this 'SUMNEG.

Without feeding the input values mote than once, develop all three sums;

SUMALL, SUMCUB, and SUMNEG. /

5. For each'ofthe 100 values that are input, print the cumulative sum to

that point. Call it 'CUM,SUM. Thus, after reading the 5th value for T,

we print the sum of the first 5 glues. After the 6th value_of T °

has been rea47.we print the-sum of the first 6 terms, etc.

6. - Think of the.hundred input values mentioned in the preceding exercises as

representing the plays of -a game which'has two players. If a number is
.

,> 1 means player A has won that play. If the number is negative,

player' Peas won that play. Now supRose the "sae, is scared as follows

.(like ,badminton or volley ball): Player A begins by serving: If the

server wins a play, a point is added to hi's score. If the server loses
0

4 -*ajlay, the other'player becomes server and the score does not change.

Prepare a flow cA8.2rt to print which player wins and the 'score aftbr 100

plays.

)

3-2 .%

e (^

3-2 Auxiliary Variables

' In .the previous section we saw the intrOdUCtion of "auxiliary variables"

into our flow charts. By auxiliary variables we mean variables not obviously

involved in the phrasing of the problem. We -used these variables on.l.y for

convenience. In thissection we will see some rather unexpected uses of

auxiliary variables.
_ _

Consider the. Fibonacci Sequence

1,.1, 2, 3, 5, 8, 13, 21, 34, 55,

where we start with two l's and then form new terms,acdording,to the rule

that each term is the sum of its two, predecessors.,, We will construct a flow

part for 'computing the-first thousand, terms of this sequence.

Instead of presenting you with the finis ed flew chart we will laave a

3.(Nk at the process of its construcfion' ghat We want_to do is to grind out
,

the terms of the `Fibonacci Sequence _and to print the,latest term as We' compute

it. For .ease of recall let us introduce the va4.eile

LTBRM

to represent the Latest TERM. We yin then want to have gin our :flow *Chart a

print.instructionlif the form: 4

INERM

J
To compute the next value of LTERM we need to addfthe_present value of

LTERM .to the value of the Next t6 Last Term which we call

Nig

The Alndamental step in this' plrograni will be the computation of tile neW7aitie:

40.fLTERM,and the assignment of this vaiTze-to'the vaihtle--LTERM-T Thistep

is indicqed byy

f:TEMM I"" L,TERM + Nur

.102

/

e

Al

r
At the same., time the previous value of LTERM gets demotteto second place,

that is, to 'NLT. This'is indicated by the box

NLT 4-:LTERM

'But which of .W'lese two rssignmentstatements should com fi

this by going back to our window boxes.- Let us take th

of the series at-which LTERM has the value 8 so tha

5. After all theswitching is done TERM should have the

NLT has the value 8, as suggesed.in Figure 3-t.

p

r

Before

3-2

stq. Let uS test

nt in constructign

T 'has the value

value ,1B while

Figure 3 -8. Desired effect of assig
above discussion

First we will try

LTERM.4-:LTERM + NLT

After

t statements' in

Km 4 LTERM

103

0

3-2

1

S

Figure 3-9. First effortto attain desired effet

No, good: ,So, we will-try i, the other way around. (Figure 3710..)

Figure 3-104 Second abortive effort

This is truly a shattering blind Is there no way to write a flow chart for

our intended algorithm for the Fitionacci sequence?

1 e Go 104

_1

3-21

g. It is important to subject our failure, to analysis. What we were really

thinking was somewhat'as follorls. Consider the two'assignment statements

LTERM F LTERM-+ NLT

NLT LTERM

First, evaluate,the right hand sides of both with the original values of the

variables, say 8 for. LTERM and. 5 fir NLT. ,Next; simultaneously make

the indicated assignmehts. The desired values are now exide4t1y assigned to

the variables. But an 'algorithm is a plan for carryin/ out a pr,cess in a

finite number of.stepsTand with a computer every seep must be-carried out in

a definite sequencenot simUltaneoUdIY:- As soon as we assign a new value to

a variable, the old value is lost forever-- unless lig have had the foresight

tomake a copy of it. Therein
/
lies the solution to our dilemma. We introduce

a new variable COPY, and consider, in order, the following as'aignmerit steps::

COPY *- LTERM

41/F

LTERM LTERM + NLT

:NLT (-COPY

Following ess before with-window boxes yields th results shown in
/.

Figufe 3-11.

a.

a

I

3-2

Figure 3-11. Successful assignment steps in Fibonacci sequence

l .

Now in our problem, we find we have two components

This last assignment box is

.- COPY 4- LTERM

COPY 4- LTERM

LTERM LTERM NLT

NLT 4- COPY.

f course, shorthand for

LTERM 4-LTERM +

F '8 106

NLT 4-COPY

It is not hard now to put our flow chart together. (Figure 3-12)

START

1

LTERM
NLT 0

COPY N4 LTERM

1/PER LTERM + NLT

.Nfir COPY

.s

<

Figure 3-12. First flow chart.for Fibonacci Sequence.

dr

10-

A
3-2

This flowchartjlas two defects; first, the flow chart shows no way to

-,:stop; second, if we wishto knowthe 657th Fibonacci nuMher,we will be -

forced to count down to tbe 657th in the output list. Both objections'

are corrected in the Figure 3.43 flow chart where we introduce anAndexing or

counting,variable, I, and branch to a halt when I assumes the value 1000.

1071(4;

ti

3=2

e

START

LTERM 4- 1

tLT 0

I

I, LTERM

1 < 1000

SYE

3.

NO

COPY LTERM
LTERM LTERM + NLT
NLT s- COPY

I I + 1

STOP

Figpxe 3-13. Final flow chart for Fibonacci Sequence

et,

We have spent ccinsiderable time on this simple example to show how a flow

chart can be built up, piece by piece. Moreover, the important idea of a

copying variable has been introduced and you have been graphically reminded of'

the destructive nature of assignment and of the vital importalice of order ih

computer, algorithms:

The student should7cteckthat-the-box.'4-, could be replaced

COPY NLT
NI/r+- LTERM

LTERM LTERM + COPY
I +

ti

EXeroises 3-2 Set A ,

1. In Figure 3-13, why do we choose to assign zerf) for the initial value

of NLT' instead of one?.

2. Prepare a_flow chart to print only the three right=most digits of one
.01

thundi.ed terms of the Fibonacci Sequences beginning with the 17th term..

Make guesses at how.many of these hundred numbers will be even, how many

greater than 560, how many between 300. end 400. Save these guesses

to See how they compare withyresults when you run the program on a

computer. ,(Hint: use the GreateSt Integer Function.)

f, In Exercises 3-1, Set B a series of 100 values of T were input from

data cards. IA the following exercises develop a flow,chart for the described

Operation On this same series of input Values of T. Always print some

appropriate message identifying the numerical result printed.

3 For each input value aftei the first value sum and print the two most
,

recently inputivalues of T and their sum. Call this sum TWOSUM. t

4. For each input value'after\th& second,, sum the most recent value and the.

value two positions.9arlier in the series. Print the sums.'

5 In each input lue after the k
th

(where the value of k is itself

Aupplied as data nd where 3 c k < 190) print out the average of either

the most recent three values or if th& most recent value is lower than its

predecessor; print the average of the preceding two values (omitting the

most.recent one from this average).

..e
6. .Ireparea flow charms to calculate and print the first 15 rows of a table

.

according to the following rules:

' 1. The_table is'to have four-columns called N, A, B, C.

2. The values in the first row of the table are 0 A4 1, 1.
-

_3., The value of is_one greater than its value -in the preceding .row.-

is one greater till its value in the Preceding row.
4

is one,greater than the sum of the values Of A

4. 'The value

5. The value of

'to and including the preceding row.
. ,

''6. The value of C is one greater than the sum'of the values of B

- to and Including the receding row.

109

41

3-2

This table pis of considerable mathematical interest because A is the

number of line segments into which a line is dividedby N points; B

is the number of regions into which a plane, is divided by N line*s;

C is the number of regions into which space is divided by N planes.

The Euclidean .Algorithm is a process for finding the greatest common
4

- divisor of two integers.
101

This algorithm is of fundamental importance in mathematics and will be

used fre4uently throughout the bfrom this point on. 1

An integer C is a common.divisor of integers A and B if it is a

divisor of both A and B,',i.e., if for some integers m and da

A = m- C and B = n -C .

0

The greatest common divisor of A and B is the greatest of all their coMmon

divisors.

When we do a long division roblem, say dividing 32417 by 1309, our

work looks like this:

-
24

1309 1 32417
2618

-6757
. 5236

1001

ecall thesenames for the numbers appearing here

dividend (B) 32417

divisor (A) 1.309

quotient (q): 24

remainder (r) 1001

The quotient and the remainder are comple*ly determined by the dividend

divisor. In fact, in terms of the greatest. integer function

4
q = [32:] and r = B - q- A .

c.

.

This last formul,a shows us that,given whole numbers A and B, there are

whole numbers q and r so that

4* (1) B=qA+r.

110

1

4

3-2

And ii,the condition r < A imiOsed,)then q an r are uniquely deter-
.

mined.

, _ .i.
. _

Now if A, B), q and r arenumberi satisfyihg (1), we will show that

the common divisors of B and A are the same as those of ,A and r. For
. . -

.

if C is a common divisor of A' and r (i.e., A = mC and 1'41= nC' with

M and n integers) then

, B=qA+i= qmC + criC = (qm + n)C

Of course,-qm + n is a whole number so that C is also a divisor of B. If

D is a divisor of B aid A, i.e., B = sD and A -=,tD, then
4,

r qA.'="SD qtrr= (s - qt.)D

so that D is also a divisor of r,

In the last' paragraph 37b was 'shown that any common divisor of A sand r

is'also a divisor of B, and is then a common divilor of B and A; con-

versely; any common divisor of B and A is also a divisor of r, andis
thus_a common divisor of A and- r. Hence, as we have set out to show, the

, -

common divisors of B and A are the common divisors of A and r.

We see then that in the problem.of finding the common divisors of B and

'A we may replace B by r without altering the common divisors. What is

gained by this?' Sfinyly that we have swapped the original problem, for one in

which the numbers are smaller, but the answer,is the same:- We suspect that

this swapping process can be repeated, but when does it come to an end? Let

us carry out_ifie process completely on the preceding example, but without

showing the long divisions. Notice in the following example the pair of

values for B and A on the second and succeedingaines are thevalued of

A and r from the immediately preceding line.

B = A +

,

.32417 4- 24 - 13091+- 1001

1309 = 1 1001 + 308

1001 = 308 + 77

+ 0

And now the process must,terminate because another go-around would call for a

division by zero. Each of the following pairs of numbers has just the same

I 4

'' 3-2

co n divisors as the preceding pair:

32417

1309

and

and

1309

1001 c)`

1001 and 308

308 and 77 ,-

S 77 and 0 .

The common divisors of 77 and, 0 tare just the divisors of since all
t.

numbers divide zero) t and the grettest.of these common divisors is 77 itself.

Thus, 77 is the greatest commqn divisor of 32417 and 1309. The common

divisors of these two numbers are.just the divisors of 77.
,

Flow-charting thisalgorithmis now quite simple. Given values for A

and B

\)

B

we compute the value oi .r by

71 rf-33
X'A

We then replace the valUes of B and A by the values of A

respectively, A

B +- A

A +-r

and r,

Mir

and prepare to repeat the rosess. Except tha if A = 0, we print out the
,

value of B and terminate the process.

These are all the components of the flow chart except for a preliminary check

that A < B aniltor a labeling of the-result. We now exhibit the assembled

flow chart. Vote that. r plays the role of a copying variable when we need
-

to interchange A and B.

C

A B

/ 2

"THE GCD OF",
A, "AND', 13,

VP

372

4 Figure 3-14., The Euclidean Algorithm

r e

There is another way of flow-charting the Euclidean Algorithm whih is

less efficiexct than the above for actual compUting, but which has a special

charm all of,its own. This method depends on the fact that division *14 as we
0

carry it out is repeated_subtrac,tion. _Thexemainder--rn---B-=
I -

we have seen to be B - (B/A] x A. But-it can also be obtained by subtracting

A from B endugh times (i.e.? B-A-A-A-A-A-A-A-A- A). This

repeated subtraction -will be indicated on the flow chart by repeatedly passing
*,
through the assignment box:

6

3-2

.,
`_`fore eac4 execution of t is box We must check.whether A is still less than

. ..

B.
.,,

c

e

If, not, then we interchange or flip the values of A ,and B and continue

as before.

NO

YES

COPY * B

B * A

A COPY

1

Now we have only to put the components together, with one eye on the.previonp

flow chart for this problem. For added interest in Figure 3-15, we have
t

included a little fancy printing for you to study.

1
NO

YES
..

7

"GREATEST COMMON. DIVISOR

or, A, "AND", B, "is"

3 -2

0.

(A < B

COPY < B
B 4- A

A e COPY

. t
8

B4 B -

r.

Figure 3:-15. Flow chart for Euclidesp Algorithm without

division` less e fficient than Figure 3-14)

1115r,

I 4

4

3 -2,

ro ." Numerical examPle:

Find the g.c.d.' Of 16 and
.

A = 16 and B = 56..

Since B < A, we interchange the

,

-

using the, algorithm of Figure 3.15:

-ET

alues (making A B = 1.6). ana cdh inue:
.

so

This time we flip the value of A which is 8, with B which is

that now A = 0, so 8, the slue of B,, is the g.c.d.

Note'

Tracing , '-
.

- ;
The Figure 3-15 flow hart is relatively easw to roll once the student

knows what-,process it is s pposed to represent. The reverse,irotiam.is often
/..,

.:: ,....

more diffiCult; that is, ne is given a fairly complicated flow chart and is
.,

asked to figure out what it is.or what it_does.
''

, '... .J ,

, Certain techniques for analyzing a flow chart are therefore frequently 11.

indispensable. One sled "tracing" is illustratedfin Table 3-1. It shows

one way we might record vital information abput Figure 3 -15 as we "trace" out

way through (or "execute") the algorithm. This is done here for a particular
e ,v

set of input data, e.g., A = 16 and B = 56. . ' .., ',, -, .

4 '
It is a good idea to work through this table line.by '1.ille*Sserving hoW

we have chosen to record key-events as they, occur. .

-.,.:

There are_many_Atys-to produce_and show a
,

trace. When searching` forthe _7_1'
. , -. p

flaws in a really complicated algorithm, either in the flow chart or in an
t

.
0

equivalent computer program, professional Peogrammers often trace the algorithm

or at least the section, under question. Once the algoritbetaslieen connected
. . . 4.

timp computer program, there are generally easy ways to do this. Wecah make r

4' the computer assist us in tracing by pifhting out certain vital information,.

at selected, places, while it is executing the algorithm under test.
. .

.

'34i
'xi

'
Tab

-

Trace of the g.c. algorithm 'in Figure 3-15
for thg example where A = 16 and B 4= 56

41

3 -2'

'After execution
of

indicated box

') ,.

Vlue of
i

1 B -

Value of
A

,

A < B A> 0
g.c.d. result

priinted

.

-.... .,-.'

2

It

[6

[6"
8

4

[6
8

4

5
[6

8

4

[6
8

5

14

6
7

0-

.

.

,

/.

.

.

'
.

I

'56

II

140

II

24

,,

8

,,

16
ii

8

I,

II

.0
I"
8
ti

11

..,

A

16
.
ii

.
ii.

i

, ,1

,,

,,,

. . 4
,,

,,

, 8
di

U

,,

It

II

it

0
ii,
tt

.

A

.

°

.

true

true

true

4

false

.
,..

4

true'

false

'

.

true

- ,

true

true

,.

.

true

..

true
. 4

-.

falS.e

:

,'.

,

.,

, -

8

Exercises 3-2 -Set B

1. Vox 4 of Figure 3414 con sins three assignments. What change can be-..

made so that two of thise assignments can be eliminated?
/

2. Draw a flow chart which inputs two non-negative. integers

and outputs their leak,common, multiple, -1,CM.-

[Hint: LCK(C,D) = C X D /GCD(C,D)]

C and D

1 (-1---"4" 1 .2

S.

si

3-2

Exercises 3-2 Set C

In these,eight exercises (xl,yl) and (x2,y2) E1% to be regarded as

the given coordinates of two distinct points p and Q, reepectively, neither

of which is the origin. Each exercise involves either a straight line passing

through the points P and Q or a straight line'segment whose endpsi.nts are
o

P and Q. It will help you to know a useful formula for a non-vertical

straight line passing through two known (distinct) points P and Q.- It is:

.15

y - yl - (
y2 - yl

) x (x - xl)
x2 - xl

the slope

Values of xl, yl, x2, and Py2 are to be read as input in that order

.''and then printed back out in the same order. Then the task.given in the

exercise is to be performed. Drawa complete flow chart for each exercise,

including all input and output. Whenever the value(s) requested as output do

not exist or fail to be unique, print au appropriate message. In all cases,

your flow chart should show a loop to read in more input data,

1., Compute the length of the linessegment PQ and outputthat length

, preceded by "the length of PQ is ". , ,g

1

2. Determine whether the slope of the line Z'Q is finite. If it ,is, output

that slope preceded by the message "the slope of PQ is ". If PQ is _

pariallel to the y-axis, print out,amessage to that effect%

3. Read as,input.and print a value for a variable delx. Compute and output

the value of defy (if any) for which the point (xl + delx, yl + dely)
.

lies on the line (not the line segment) PQ. (See Figure 3-16.)

.

-
.(:1 del ,y/-1. day)

.1

dely

(x by A) det%

0.

(4

Fignre 3-16. dollinearity of three points

118

1 Oio

rne

4. Read as input and.print a nuMber defy. Compute and,output the value of

delx. (if any) such that (xl + delxA yl + dely)' lies on the line PQ.

5. Read as input and print a number .x. Compute and output thOvalue of y

(if arm), such that (x,y) lies on the line PQ.

6. Read and print a number y. Compute and output the value pf x (if any)
. .such that (4c,y) lies on the line PQ. .

7. Compute the x- intercept, and the y-intercept of the line (not the line

segment) PQ. Output both numbers (if any).

.8. Compute and print the x- ands y-intercepts of the line segment PQ.

Pi.nt appropriate messages tf-,the line segment PQ does not intersect
the x or'the y-axis.

.40

4

119

low

'6

p

3-3

3-3 Compound Conditions and Multiple' Branching
3

Often one, may encounter or wish to condition boxes such as:

433

The statement appearing in this box is call

obviously ecvlent to

4
"compound",statement and is '

This
v

means that we leave 1 the bottom if both the conditions 2 < x and

x < 5 hold. Otherwlses weleave by the side. It is important to see how to

express this compoundeconditiOn in terms of the simpler components:

4.'1.

/
. i A

,

;

In, this way we will be able to make flow charts more readily translatable into

computer language, tlhe reason being that each condition may have to be tested

4.14." in a separate step.

-

120

/

Since the compound statement is true only if both simple, relations are

true and is false if eitheasimple relation is false we Can clearly connect the

simple conditioiliboxeslas in Figure 3-l.760).

a

4

(a) Compound (b) combination of simple

Figure 3-17. Compound condition box and an equivalent

combination of simple boxes

A

In any flow chart in which it appears, the box in Figure "3-17(a) may be

replaced,by the combinatio9 in Figure 3-17(b), the connections being made es

indicated by the arrows. Neithef (a)'nor (b) is the "more correct:" The

combination in (b) is the more detailed and hence the more readily translated,

into machine language. In that respect (b) is better. But on the other hand,

the single box in (a) is more easily scanned by a reader who wishes to know
4.7

what the flow chart is doing:-
,

In constrast to this exampie where we want to know whether both of two

conditions are true, there are, places where we might want to ktiow Aether.

either of two conditipn$ is tri4e. The decomposition of thd latter type of

- ""compound cOnditiOn 4.nto'tiniple conditions is shown in Figure 3- 18(b),.

.&

4-;

rr

3-3

(a). Compound (b) Combination of simple.,

Figure 3-18. Another compounilcondition box and its

equivalent combination orsimple boxes

Clearly,'compound condition boxes could grow to any'degree of complexity

demanded by the problem, with any number of conditions to be satisfied and

any number of variables involved.

For example, if we want to know when both X and Y are positive or

is zero we can draw the compound box and its decomposition as in Figure 3-19.

> 0 AND Y > -0
0 R = 0

(4:4; Compound

-CD

(b) Combination of simple

Figure 3:19. Composit on of condition boxes

Notice that8the decomposition in Figure 3-19 can be accomplished in two

stages. We first use the method shown in Figure 3-18 to decompose the "or"

1 2 4

122

statement, in 3-19(a) to obtain

4-;

11
)

'`i ',

)-,

i

J

S'

, 40

4 3

0=ND >,0 F z

TT

Figure 3-19(c)

4

Yow the method of Figure 3 -17 is Used to replace' Box 4 of Figure lap-19(c) by-

the "cloud" in Figure 3--,19(b).

A compound condition box may be regarded as shorthand for a combination

of simple condition boxes. There is another type of shorthand associateorwith

condition boxes which canbe extremely helpful n the process of gradually,

building up complicated flow charts. This d technique is designated

by the name of "multiple branching."

To indicate multiple branching we will draw ,eompoupd condition boxes with

several exits. Each exit must be clearly labeledi.to sh64'.what condition would
pause its use. For example:

and

Two impo ant warnings area in order:

1 =1
1=2 1=3

The conditions on the exits must mot be overlapping. If one exit

were labeled."3 < X < 7" and another were labeled 015 < X < 10",A

then if we come-into this box with a value of X between 5 and 7,

We will not Mow which branch to take on leaving.

(2) All possibilities mUst-be exhausted. If the conditions' on the exits

were "X 3" and "6 < x < 9" and -"9 < X", then if we come into.

1 ''''' . -

the box with a value of X'between- 3 and 6 we will have no way

to get out.:. Then we will really be in a box!

123

3:3

An example of the usefulness o multiple branching is provided by the

example in,Section 311 of tallying Test grades as 'flow-charted in Figure 3-7.

The way in which this same problem Might have been handled with multiple

branching ;is in Figure 3-202 We simply "collapse" the chain of'two

2-way branches, (Boxes 4 and 5 of Figure 3-7) into a single 3-way branch
. t

(Box 4 of Figure'3-20).

We should' note in. passirig that any box indicating a multiple branch of

n ways can be broken down into a chain of n - 1 2 -way branches. Thus

the 4-way branch on theme value of I may be viewed in more detail as the chain

of three 2-way branches:

4

c) 6 124

(I = 4)
4

S

count (-0

low (-0

mid (-0

high (-0

T S 50

T

5 6:

low e- low +

VALUE OF T 80 <T

'3-3

50 <T < 80

7

miki< -mid +1

8
count <- count, +

9

.10

count < n

"Values of count, low, mid, and
high are"5 count, 1.9w,- mid,
high.

A
Ar

.Figure.3-20. Use of a three-way'branch

3-3

In the normal course of events this multiple branching flow chart would

have been given first. It represents our first formulation of the problem.

After we had first drawn this flow chart we would then have given our atten-
.--.

tion to the problem of decomposing the multiple condition box into a Amhina-

tion of simple conditions.

Exercises 3-3

& -

In each of the next seven exercises your job is to construct the flow

chart equivalent to the given assertion using only simple condition boxe's.

The "the" path of the assertion should lead to Box 20 and the "false" path

to Box 30.

Example:

The assertion is: xl is less than x2 and eithgr P exceeds

G or T equals S or both.

The required flow chart is:

7'
1 x lies between 2 and 7, ,inclusive.

2. Either 7 is less than Q or 7 is '

less than R or .7 is legs than S.

3. x. lies between 1.7. and 8.4, and

y lies between -3.9 and +5.4. .

126 4'1

3-3

4;; Given the Shaded region inside the two straight lines whoseequations are

n

(a)

y2Xx

y = 2 X x

The pOint (xl,y1) lies inside

'the shaded region. of quadrant I.

(b) The point (xl,y1) lies inside

411
the shaded region of quadrant III.

(c5 The point (xl,yl) lies some-

ihere inside the shaded region

of quadrants I or III. t

5,, The point (xl,yl)' lies inside the

shaded triangle in the first

quadrant formed by the straight

line y -
3
x + 2 and the

coordinate axes.

The point (xl,yl) lies in the
D

.shaded area (or on its boundaries)

formed by the curve,,y = sin x

and the straight- lines, y =
N 2

7. The intersecting straight'lines

y = 4 x 11 and y = -4 x + i6

determined four-regions, one of which, region A, lies eritirely in the

upper htlf-plane. We assert that the point (xl,yIY lies in the *ntgrior

'of t-6gion A or on its boundarY.i

4

3-3

For each of the following flow chart assertions, certain x, y \pairs

lead to Box 20. These pairs define a region in the x-y plane. Yob
.., ,

is to draw the graph.of this region.

8.

9.

j10. Draw a flow ch rt which computes and prints the numbers 1,

as a message to indicate in which quadrant a point P lies

coordinates (xl,yl) of P are given. What happens if P

. one or both axes?
.

1

130

2, '3, or 4

The

lie's on

O

-,

11. 146 retu to the carnival wheel problem (EXerciae'6, Section 2 -5, No. 9).

We sup se now the rule is modified. Recall p, the number of points
,,

won o lost, waforiginal4 a straight line function of k, the position

nuMbe in the.rdloeated group of four sectors. We now want a new point

.3-3

ruleWhere p is an arbitrary function of k. For example,

Old point rule
,

New point rule

0 lose 30 lose 20

1 lose 10 lose 30

.2 win 10 win 0 \---

3 win 30 win 50

Draw a revised flow chart to show p as a function of the same data

pair S and m but with the new point rule given above. (S is the

sector position of the wheel at rest, and m is the number of sector'?

positions the wheel is spun.)

.

ti

129

Iv 1.

.4

'0

3 - 4

3-4' Precedence Levels for Relations.

e pause here to look in a more formal way at the statements which we have,

beeniriting inside the oval condition boxes. When the lines emanating from

val are'marked true T) and false (or F), perhaps a more appropriate

:term for the statement which appears inside is an assertion.

Consider the condition box

(More complyated conditions may, as we have seen, be represented
g

combinations of this type.) The condition inside thebove box consists of

two arithmetic expressions with a "relation symbol" between them-

,

arithmetic expression

4

arithmetic expression

relation symbol ,

The complete list of "reliation ymbolsaruiad in this text is

Such a symbol together with a constant on each side amo to an asser-

tion that a certain relation holds between these numbe The assertion may

be either true or false. For example:

is certainly true, while

8

is o. ously false. We mayalso see subl a relation symbol between two /f3,rith-

metic expressions such as:

130

tit

4. 4
This states that a certain gglEttion holds, not between the expressions

,
"I +.1 arid "N", but between their values.`.

SuppOSe we have a flow chart with such a box in it as this:

A

34

During the computation indicated by thejlow chant we may pass through this

box many times. Sometimes the assertion indicated by the "relational

expression" in t box will be true and sometimes false. And the truth or

' falsity det Ines the 'exit by which ye leave.

et us look at our method of determiniAg whether the assertion is true .

r false,. r

(1) -:,Took up the *rent values of the 'variables.'

'(2),'tvaluate the arithmetic'expressions on either side of the relation

(3) Determine whether the relation in question holds between the

numerical constants obtained in (2)..
It, follows, for example:, that the expression

X2 + 2xX+1< 2XAXB

will be read as though parentheses were inserted as follows:

,----

(X2 + 2 x X + 1) '< (2 X A x,B).

We can convey the, same idea b ying that when reading expressions
.

having noparentheses, relational symbols have a lower precedence than any

of the arithmetic operators. We can, expand the precedence table, Table 2-4,

tq includ, the relational symbols.

.'3 -4

Table '3 - 2

Precedence Levels for Relational Expressions

Levels Symbol

High.

Low

First "exponentiation" or "raising
a power"

Second' / , - (unary)

Third ;-+. (binary)

Fourth ' <\ , '< , 9 , = , /

Nothing need be said about scanning left -to -right for symbols of the fourth

level, since in a properly written expression there can be, at most, One such

symbol. Such an expression as

3 < X < 5
eg"

(frequenily'encountered in mathematics) is actually a compound exp ression,

i.e., in this case--

3 < X aaa X < 5
...0"°"6"

We have seen how to deal with sl.kch compound statements in the preceding section.

I

Perhaps you would be interested in seeing how a'machVne might tcfind out

whether one of the above inequalities is true dr.fals e., ,Consider4 for example,
A

the SAMOS computer of Appendix, A. It has only the one branching ibrtruction

BRANCH ON MINUS. We consider the condition boat the beginning of. this

section,

with the current values of the variable, given by
.

4

. Variable
A

I N

CureA nt value 7' 1'

132,

1,3 4

First the values Of the variab

arithmetic expressions on eith

The condition box<bay now be v

Because 8 > 10, is equivalent

8 10 is evaluated and we may

es in the cond

r side of the

sualized'as:

3-4

ition box are looked up and the
-

relation symbol are evaluated.

7.

the relation 8 10 >10, the expression

ow visualize the condition box as:

The. machine determines th6.truth

examining the first character in

being a minus, we "branch on minu

in the branching order to pick up

false side of the flow chart box.

branch on minus will,be executed.

"side of the flow alert box.
YE

r falsity of the r lations-2 > 0 by

he numeral on the left. This'character

," that is, we go to an address spe ified

ue next instructions : ,vrespondingo the

Otherwise, the next nstruction after the

This corresponds to emerging from theirue

r.

3-5

3-5 Subscripted Variables yr

We come now to the second C,; powerful tools referred to in the opening

ragraph of this chapter--the subscripted variable.

At admit as variables inscriptions of the sort:

- s

X1, X2, x3, X4, x5 .

Here the thing occupying the position of X may be the inscription tor any

properly written variable while the subscript must be an integer.

Each subscripted variable is provided with a window box as /sPith ordinary

variables as suggested in Figure 3-21.

Figure 3-21. Window boxes for subscripted variables

We do not introduce these subscripted variables just for the purpose of

/...ALag more variables available. If that were all we wanted, we could use:

1'

Xl, X2; X3, X4, X5 .

The application of subscripted variables lies in our ability to write

expressions like

ik711

in our flow chart boxes. N is a variable which can have-only an ad set

of consecutive values, fike, 1, 2, 3, 4, and 5. Let us see how we interpret

such an inscription. Supposee,gnd ina flow chart the assignment box

Ils H
Evidently, we are .supposed to put 19 somewhere. -But where2 If we look

at the Window boxes of Figure 3-21, we-find boxeli' labeled X1, X2, X3,

and X5, but none labeled XN. We do the obvious thing. We look up the'

cyrent value of N. Say it is 4. Then we interpret the assignment box

0

3-5

shown above to mean.

x4 19

'

. .,.

Thus XN is a subscripted variable which unambiguously designates one
1

'window box from the set inscribed with X1, X2, X3, X14. or X5. Which window
box is designated depends on the current value of the variable N.L

The domain of permissable values of the subscript NP' can,.d course,
be as large as is necessary. Generally we will limit N to't e non-negative
integers. ..The real power of subscripted variables becomes evident,when we .

_consider problems having a large number
\

Of related variables. The nex example
begins to .illustratP the porer of this notation.

Consider the problem of finding and p inting the largest value of six
inpUt yeriables. We treated this problem wih three input variables in
Section 3.1. The flow ch'a'rt we will generalille is given in Figure 3-5(b).
We give the generalited flow chart in Figure 3-22(a) with no further, explana-

. tion:

'.Note that XN is a. different "animal" from X& The latter case can only
designate one windWhox-2that:Inscribed with X.

o

135

1 3 7

, 3-5

MORE V D.

A,B,C,D,E,F?
OF

2
YES,

IA,B C D E,F

3

ILRGSTA4

4.-..
10

T 1

(LRGST < B
1 LRGST <-

5 F I 1

-6' . ,
11

(LRGST
< C T LRGST <--

1

--.--- .
4,! 6 \

I
.1 LRGST < D LRGST 4-- D I I

\
1 //

, 7
4..

13
....

(LRGST < E LRGST 4--

F 4...
I

.t 14

NO

9

LRGST < F LRGST *-

"THE LARGEST,
VALUE IS",
LRGST N

-

CD

6

'
1

CORE

VALUES On
INPUT VARIABLES

LRGST < A

2
YES

6

3

*- 1

T

4
LRGST

7 A

K<'6

K*-K
"TIEE LARGEST OF"AAAA

1, 2' 3' 4/ ,A5'
, "IS", LRGST

(a) without (b) with

Figure3-22. Flow chart for finding largest of six numbers

without and with subscripted variables

Wd see a certain monotonous repetition in,this flow chart. Think how mud7h

worse the situation would have been if there were a hundred input variables

instead of only six. The problem would get out of hand (as well as off the

3-5

paper).

We'will now see how to treat the same probleM with subspripted variables.

We let the input variables be

. ,

Al, A2, A3, A4, A5, A6 .

We have put a dashed line around one of the "blocks" which go into making up

`,this flow'chart. TIIM. general form'oft such'a block in our subscripted variable

_ notation would be:

With suitable values assigned to K this configuration can represent any

of the five "blocks" in Figure 3-22(a). But how do we get to the next step?

Clearly, unless K already has the value 6, we augment K by 1 and come .

back to the top of the block. So far we have:

6

(1 LRGST < A. LRGST 4- AK

7

(K<

K K

8

Figure 3-23. Partial flow chart for largest of a set of

numbers

What we have so far described represents the body of the flow chart. All.that

remains is to attach the head and tail.'

To start, we must input the data, assign the initial value of 1 to the,

,

j'h

1%

3-5 ief

variable K hook in at the top of Box 4 of Figure 3-23. If we\ieave

Box 7. at F we print the current value of LRGST and go back for more data

(if any). The complqtg flow chart is giare'irin Figure 3-22(b).

Careful study of the development of the flow chart in Figure 3-22(b) and

--...acomparison with that in Figure 3-22(a) will show better than any number of

words the importance of subscripted variables and the way we use them.

An important thinto observe 4bout the flow chart "&f Figure 3-22(b)

is that it would only be changed in the most minor way if we had 30 input

variables rather than a mere six. In Box.7, the 6 would be replaced by 30.

In the input and output boxes, 2 and 5, Av. A2, A3, A4, A5, A6 would be

4 replaced by Al, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Al2, A13, A14, A15,AAAAAAAAAAAAAAA
16' 17' 18' 19' '20' 21' 22' 23' 24' 25' 26' 27' 28' 29'

A30.

We can avoid all of this writing by introducing a more compact nofation.

The real point is that the structure of the flow chart, i.e., the way the

boxes are connected, does not depend on the amount of data.,

In the input and output boxes we are really dealing with a set of

variables and there is a c,mvenient notation in common use which we can

adopt. The notation:

(AK, = 1(1)30)

is a shorthand equivalent to listing every element Al through A30. &plane-

tion of this notation is given below:

initial value
of subscript.

Example: The notation

denotes

amount by which subscript
is incremented (i.e.,
size,of steps) in advanc-
ing from element-to
element in the list.

J'
J = 7(5)28)

117; Al2, A17, A22.

This notation may be used either in an input or in an output box. In

most uses in this\lext, the initial value and the increment will both be 1.

cut -off point.

' No subscripts
.larger, than this

allowed.

-

3-5

The input and output boxes, 2 and 5 of Figure 3-22(b) could be replaced by:

2 5

K = 1(1)6) "THE LARGEST OF",

(AK, K = 1(1)6),

"IS", LRGST

o

Exercises 3-5 Set A

Problems 1 and 2: When we revised the carnival wheel problem in Exercise 11,

Section 3-3, we employed a multi-way condition box to model the new paint

rule. In Figure 3-24(a) you see one way to achieve that 'objective.

A student now proposes an alternative solution shown in Figure 3- 21#(b).

He Claims it is simpler, equivalent, and an inherently more general solution.

, Study these two flow charts carefully and'ans/Wer the two questions given below.

1. Under what circumstances are the flow charts equivalent?

2. In what sense can (b) be construed to be more general than

(a)Carnival wheel with a
conditional

Figure 324
139

14 1.

(b) ,Carnival wheel

with subscripts

3-5

Problems 3 through 7: The flow chart in Figure 3 -25 is an algorithm which

accomplishes the following steps:

(a) Inputs a number c

(b) Inputs 100 numbers b1, b2, ..., bloc

(c) Determines and prints a list of-the bi which satisfy the relation

>,c\

Study the flow chart carefully and answer the following qUestions.

3. How times is Box 6 executed?

4. How many times is Box 8 executed?

5. Under what circumstance will Box 10 be uted? The remark is made

that ANY f.s a "switch variable"j-

use a rail switch. ^Explain. .

at is, it is used like railroaders

6. Is it really necessary for there to be more than one value of b in

memory at any given time in order to achieve the same output objectives

for this program? Another way of asking this question is, "Are subscripts

_really necessary in this algorithm?" If your answer is no, redraw the

flow c art accordingly putting a check mark.next to each box you change.

7. H w ould you modify'either Figure 3-25 or your modified version, result-

from 6, to generalize the flow chart so that instead of reading

100 elements for b we read any given number n of them?

fi

e

K)4,

14:.,
j

0
r

3-5

8. Drali flow chart for inputting n and a vector so, al, ..., an. The

a's are considered to be the coefficients of the polynomial

ao + six + a2x
2
+ + anx

n

and n is its apparent degree. However some or all of the coefficients

may be zero. Construct a flow chart to determine the actual degree, m,

of the polynomial. Of course m < n and m can be. determined by

searching the set of coefficients for the non-zero element with the

highest subscript. Output in and the coefficients from ao through

am inclUsives If all the coefficients are zerb; don't print any

coefficients but let.the printed valug of m be -1.

Additional remarks on subscripts

As we have said, we view XN

inscribed with X1, X2, X3, ...

current value of the variable N.

reasoning,) designates one of

current value of the variable I.

(if N I) or may designate the

as designating one of.a set of window boxes

Which box is designated depends on the

Now, what do,we mean by X.1? By the same,

the boxes Xi, X2, X3, !.. depending on the

XN and Xi may designate different boxes

same box (if N = Ij.

Now, what do you think XN+1 should mean? Apparently it should desig-

nate one of the boxes inscribed with X1, X2, X3, . Which of these is
2

designated should depend on the current-value:of the variable N. Suppose

the value of N is 3. Then 'N + 1 is 4 and XN
+l

really,means

From this example you will correctly guess that arithmetic expressions can be
6

used as subsctipts., However,

the complexity of expressions
.,0

In this text 'we will normally

iccedural languages sometimes place limits on

used as subscripts (see your language supiSlement)

avoid expressions more complicated than

N + 1 (or N k k) as subscripts.

In summary; if the subscript of a variable is an expression, it must be

possible to compUte the Value of this subscript each time the subscripted

variable is encountered in a floe chart box. The subscript expression must

be integer-valuedl ike any expression, a subscript expression is "computable"

if we have previously assigned values for every variable that appears in the

subscript expressibn.

142
:14

I 3-5

,
Sorting Example

Frequently in computing we have to put numbers (or other things, like

named) into some kind of order. This, "sorting", seems like, a.very simple

thing but the problem arises so often as part of larger problems that much

effort has been sient to be able to do sorting at efficiently as possible.

Many algorithms have been invented and many refinements made for this

Now we will develop one of many possible algorithmi for sorting. WeiPille

Study other sorting algorithms later.

In sorting the problem is this: If we iniUt a set of numbers:

we should output:

7 2 6 5 9

Consider a list of input variables with values:

Al A2 A3 A4
A5

-
A6

5 7 2 6 5 9

1

AP,

pse.

Scan the values from left to right until we encounter the firSt place where

the vales decrease. (If there is no such decrease, then the'values are'

alreaiY"in increasing.order.) In the above example, we find this first de-
.crease when going from A2 to A3. Interchange, these values:

Al A2 A3 A4 A5

5 2 7 6 5 -9.

What next? Well, we seem yo have done some' good. So, let=s treat tDis list

Must 'like a brand new one. That is, go back to the beginning and sc26,fiom

lett'to right, etc.

This almost seems too simple to work? Nevertheless, we observe that as

long as the list is not in increasing order, there will always be another

interchange to do. Each interchange affects the relative order of just one

'pair of values and since there are only finitely many such pairs, the algo- .

rithm must terminate. Perhaps yoWA like to try the process with some playing_

cards. -

3-5.

Next, to put this algorithm on a flow chart. The basic idea is the 'inter-

change of AK and AK,_, which, ,experienced as we have become, we know to

represent as .

/

COPY +- ;AK

AK 4.-

AK+, +- COPY

We execute this interchange only if AK > A_ Thus, the Condition box: '

If false, we go to the next position in the list

and repeat 'the test (i.e., return to the

the interchange box, we set 4, bak to

skeleton of Figure 3:26.
y4

J

oto

a

K (- 1

6

K K +

condition box).

1 .and s

®y

On emerging from

t over. We now have!the

a

o

'

.10

O

5

e

14;

-

0

1 ° .

COPY E'. A

A 4-- A.
K+1

AK+1 COPY

O

0

Figure 3 -26. Skeleton of a sort---_

1.44

1 4 6 '.

%

Only'inputr output and stopping mechanism are needed. We should also

decide on how large a list of numbers the flow chart shouldbe set up to

handle. One, time we may want to sort 13 numbers, another time 200, or

perhaps 1000. Why not let the variable N denote the length of the list?

This is all put together in Figure 3-27.

START

1

(mom wpm
DATA?

NO

YES

N,(AK,K=1(1)N)

3-5

K 4- 1

(AX AK+1
5

COPY 4 A
K

AK (7 AK+1

K 4- K + 1 A
K+1

4.- COPY

K < N

K = 1(1)N)

Figure 3-27. Sort-

fl?7

3-5
I

Before we leave this section there is a terminology we should like to

introduce in connection With subscripted variables. Let us suppose we have

a subscripted variable such as

(xi,. I = 1(1)6)

It-is then customary to refer to'th list (or linear array):

2'
X3, X4, X5, x6

or the list of values of these variables:

7, 9.2: -.52, 17, -2.73, 0

as a "vector." The individual entries this list are referrOd to as the

"components" of the vector. This is in ement with mathematical usage.

Engineers and physicists often speak of a vector as having a magnitude and

direction but that view is really just a special example of our mathematical

.detcription of a vector.

as

Mathematical notation requileo hat ouu vect..)ts be enclosed in parentheses

ti

(X1, X2, X3, X4, X5,,t) ..

We will not insist on'these outer parentheses in our computer .work.

.We will frequently use such terminology as, "The vector X," to desig-

nate the,list,
10,k

X1, X2;' .x3, x4, X5, x6 .

Exercises 3-5 Set.B

This group of exercises concerns the sorting algorithm given in Figure 3 -27.

1. Suppose you wanted to test the algorithm by determining if the list

7 2 -5 4

will be prbperly sorted in .ascending order, i.e.,

-5 2 4 7

(a) What are the values of the input data at Box 2?

146

148

L

O

-
(b) With these inpUt data race through the algorithm beginning at

box 3, showing the box numbers in the sequenVekhey are actually

executed until box 8 is reached. Use a table like the one given

here. It is partildly filled tor:this problem to help' you get

started. v 4

x

sequences, 3 4 5 6 7 8.

assigned
value of

K

1 i 1

2 1

4. I 1

5 I'
. .

6 1 2

7

.)
\8

9

. .

/
t

Scratch pad
- for a vector

1

3

4

3 -5

2

7

-5

4

(c) How many times in this sequence has a flow chart box including

box 8) been executed before returning to boX

(d) How many times is.box 4 reached?

2. By now you should be thoroughly convinced this algorithm will work

every time. Suppose the values to be sorted are

-9 5 9 12 ..,

That is, they are already in ascending order. How many times will box 4

- -be executed before box 8 is reached?

,3. What if the input values are already sorteie,but in opposite order, say

v12 9

How many executions ofbox 4 ?

3 -9

Save your results for problems 1, 2, and 3. In, the next chapter we will

look at another sorting algorithm and will wish to compare with corresponding

results of the new algorithm.

147

?,.t

A

3-5

Exercise 3 4- Set C

There are 101 members in a youth symphony orchestra about to make a

concert tour. A reporter asks the conductor, "What is the median age of -
your members?" He replies "I have a list of the ages-of the players. Will

that help you?" '(The medi(lin of an ordered set of numberslleou recalI).!sthe

middle nuMherr if any.)

(a) Draw a flow chart to find the median of of ;the 101 players if

the ages are ttken in order from an alphabetical listing of the

...Players. Can you solve this problem without using subscripted

variables?

(b) If N is even, there it no middle number in a set of N numbers.

How would you extend the idea ofyinedian to an ordered set of N

numbers if N is even ?, Incorporate this idea >o your flow, chart

which found the median of a set of N/ odd) numbers. When revised

your flow chart should output the median of any ordered set of N

numbers (odd on even).

-(c) Now the reporter, Wanting to be prepared for the next orchestra to

come to town, asks_ or a flow chart to give,him the median age of

any size group when the ages are given in arbitrary order: He

would also like to know the ages of the oldest and youngest in the

group. Prepare the 'flow chart.

I

148.,

150

K

4

3-6 _Double Subscripts

- Once yott,have mastered the use of,aubscriAed

will find that double subscripts offer very little

In mathematics data often come to us in such

rows and col
*4

e mathe

often ese mat

s as:

5 '2

9 -4

6 7'

"`7
1.

0 2

3 -2

Figure 3-28. Matrix

3-6
Sr

variables in computing you

additiOnal difficulty.

"rectangular array" of

atical term for such a rectangular array is "matrix." How
4,

One =y wh

"coefftti

es crop uR you would have to see to believe.

h-sueKa matrix as the above might occur is as the

of a'SysteM7O? eqi tions:

5W-+ 2X + 7Y = I

9W - 4X + 0

1 6w + 7X + 3Y

mfr

has three rows and fcA columns. Columns are vertical

reek temple. The indiVIdual numbersappearing in the,

." When you want to discuss the entry in a certain

specify the poktion by giving the row and the column.

trix is essentially, a "table."

wrin

i 2 3

\
5 2 7

9 4 c? , 2

\ .6
$

. 7 -2
.

3-29. The above matrix as a table

149

14: r.

C

3-6

Double subscripts make their appearance when, we introduce the notation

used in talking about entries in a matrix. ,We use a variable with two

subscripts

AI,J

to indicate the entry in the I row and the J column. ,The rm./ is always

given first ana the column second.1144;hus, if we let A represent the matrix

at the beginning of this section as tabulated in Figure 3-29, then the value

of A
2,3

is 0 while that of A
3,2

is 7.

As in the cash, of singly subscripted,variables, we consider that thdte is

a window box associated with each of the twelve variables A11' A12 and'

so forth as suggested in Figure 3-30.

this

Figure-3-30. Window boxes for subscripted variables

e,.

If we wish to input a table into these window boxes, we could indicate N

on a flow chart 'iv the input "box in Figure 3-31. ..

A" Al
1,1' 2'

A
1,3'

A
1 4'

A (.
/".

2;1'
A

,2",
A
2,3'

A
2,4'

A3,1/! 4A3,2, A,,
'

Figure 3-31., 'Input Box for,Subscripted Variables

It Mould be good to have some notation (as in'the last section) to refer

to en,entire matrix or to portions thereof. An extension of ur previous

notation is ghown.in Figure 3-32.
. 4

1

I J = 1 (1) 4 } ,

this Much means elements
of row I, in order

means: what is inside inner
brace is to be repeated for all"
values of I, in order

Figure 3-32. Abbseviated input statement for doubly
subscripted variables

0

,A
This notation is an abbreviation for what appears in Pigure-3-31. Nathet-

.

maticians and computer programmers like to use such notation because it:allows

naming particular ordeled,.subsets of mttrix elements in an exact way- Thus, the. ,
.

Way the braces are used in Figure 3-32 indicates that each row is read in com7,-...,_ . /-...
.,

pletelY (left to right) before going ion to the next row. This bould be impo'tant
.

to knoll if the table is too large to put 4/Ito one card. We would- thenp4eaCh

.'-!--imw(amther-than each column) on_a 'separate card. For our flow chart.liinguage
.

4 4'

hOwever, this information is quits superfluous. All we need to.know)is that'.

an input boXlike that in Figure 3'...32 will'cau'se entries of a matrix like that

in Figlbe 3-28 (or ,Figure 3-29)p to be assigned to the appropriate- variables

7presinted in Figure 37,30.

f

.
.

r Significant computations with doubly subscripted variables usually involfe

complicated looping and will;,' therefore, be left to the, next chapter.. 'We con=

tent_oursO.ve4.here with a very simple exatple 11VAtrating the_ use .

pe-of-double
.

subscripts in flOW-charts.
-

Example: A zero sum game

6

9

1

8 , .$

5'
3

2

o

8

3

5

2

,

5

8

5

7

4

1

14

3

4

3

8

6

3
2

1

6

1,

4

1

6

1

3

2

'8

.we are, given thecmatrix:

..?

/
t

376

b...aow describe a game e oying this matrix. We have two dice, one

green and one red. We roll the dice and let K denotelllevnuiliber on the

green die and L that on the red die. Now we increase our score by the sum

4 Of the entries in the Kth row and we deduct from our score the sum of the

entries in the Lth column. Can you see why this is called a "zero sum'

game? Hilt: Around what total score will the game hover after a lai-ge amber

of rolls of ice?

We will construct a flow chart for this game. An outline of the steps

involved-in the problem is:

1. Ihput the_given matrix.

2. Input values for K and L.

3. Calculate-the sup, of the entries in the Kth row.

4. Calculate the sum of entries in the Lth column.
1%

5. Compute the difference of the values in Steps 3 and 4.

6.' Print out this difference.

After,a detailed analysis of Step -3, the flow chart should offer little

* difficulty. The analysis of this detail is given in Figure 3-33.

WIN 0

1.

A

. 0

WIN .4- WIN +

J +1

J

T

Figure 3-33. Detaillof zero zm game
a

4

You shou],d see that when wezfina;iy come out of this loop of

WIN is the sum of the entries in the Kth row of the matrix. ,Notice that

tie value Of K which determines the row in which,entries are summed, remains

the ,same during>ai;,y one execution,of the 16op.

, Now we exhibit
4
ple entire flow chart for this game in Figure 3-34.

S

1

((A ,Js J=1(1)6),I=1(1)6)-I
2

K,L

WIN '4- 0
LOSE 4- 0

I 4-1
J 4-1

F

WIN 4-WIN .151.

J 4-J +.1

1'1

3-6

(I < F

7

LOSE 4-LOSE + AI
L

I <-I + 1

NET `4- WIN,- LOSE

3-34.4,F1ow chart for the game,

3-6 A

It may be well to point out for contrast an alternative flow chart to

Figure 3-34; which makes a sensible use of subscripted variable methods,'.for

this problem and leads to a simpler program.

((A1 3, 3=1(1)6), I 4 1(1)6)
3

NET4-AKI1+ ,2tAK,3+AK,4+AK +AK,6 - +A
2,L

+A + + L+A6
L5

/ 4
NET

Figure 3-35. Less instructive alternative

However, we lose some potential generality with this approach. Notice

tYtat in principle. this game could also be played using larger matrices, say

8'x 8, 10 X 10, etc. Of course, for each new size we would need either dice

with more faces, like octahedrons, or some other device for generating pairs

of numbers. To generalize Figure 3-34 for any size array we need change only

the 6's where they appear in Boxes 1, 4 and 6 to N and add a Box O'to

the flow chart at the start to read in this value of N--which could vary from

game to game. Such generalization is not possible with the approach used in

Figure 3-35. In short, while pr a shorter program, Figure 3-35 captures

less of the spirit of our al rihmia method.

Exercises 3-6

In each of the following exercises, assume that values for,the variahles,
,1

or matrix entries which are mentioned ale already assigned initial 'values.

Your job is to flow chart the action described. (These are some of the

elementary operations often performed with matrices. They are usually pieces

of larger problems.) .

4

115'.

'For example, the matrix P has

of the absolute values of all entries in row

assigned a suitable value.

.'A suitable answer is:

22 rows and 27

1.

ROWSUM

Jf-1

3-6

columnsliiFind,the sum

Ly where L has already been
.

ROWSUM ROWSUM + IP

J + 1

< 27

..\ROWSVM

For the same matiTR P, find the sum of all but one of_the entries in

the 'Eth column. The exception is the entry in row 12 of that column.

Call the sumAeing ge7nerated COLSUM.,'

,y
2. Foi- the samObetrix. .4 ;add to each entry in row L the value of the

_,«..

corresponding entry (same column) of row M. As aniactual example with

a much smaller'matrix, Q, lc, would have:

1

Row L

Row M,

before

3 4 2 5 -4

3 9 .1 2 -4

1 1 2 3 2

45.3,7 1.

after

3

'4,
1

4

10

1

2

3

2

?-p.,

5

3 2*

3-6

,3. For the, Same matrix P, 'add to each entry in row L, except in the Kth

entry; 2 times the corresponding value of the Mth row.

J.

4. For the same matrix P, intrchange row L with, row M.

5. t For the'eame,matrIx_P, find the e;71p2row L having the largest

magnitude. Divide every entry in row L by the entry of largest

magflitude.

A

5 g6

4-1 Looping,

With the introduction of the concept of branching in Chapter 3 we have

beeable to develop some fairly complicated flow charts involving looping.

"Looping" refers to the kind of "connections" which result in passing through

the same box twice or many.times during the course of a computation.

Chapter 4

LOOPING

In this'chap er we will study looping in more-detail. Then we will develop
40.

a systematic way treating one very important kind of looping.

We commence by putting down side-by-side in Figure 4-1 two different flow

charts for the Fibonacci Sequence emblem of Section 3-2. Remember that the

Fibonacci aquence,

1, 1, 2, 3, 5, 8, 13, 21, 34,

has the property that each term (after the two lts) is the sum of its two

immediate predecessors.

START

1

4

LTERM

5 N

COPY 4-- LTERM

LTERM E- LTERM + NLT
NLT 4- COPY

".2c1

(a) No-Count Flow-Chart

Figure 4-1 Two Flow Charts for Fibonacci Sequence

1

\,

4

LTERM 4- 1

NLT 0
. 17 -2-
-4.1D- I+11

I, LTERM

COPY LTERM .

LTERM LTERM + NLT'
NLT 4- COPY

.(b) Ancestor of Iteration,Box'

.

5 9

4-1

Theflow chart in Figure 4-1(a) represents an algorithm for computing

and printing in,order all terms'of the Fibonacci Sequence which are less than

10000. The flow chart in Figure 4-1(b) represents an algorithm for computing .

and printing a numbered list of the first 1000 terms of the Fibonacci Sequence.

4

We can see that Box 5 is exactly the'same in epch flow chart,. This box

contains the fundamental computation in this algorithm.

rt
Each flow chart has a loop, i.e., Boxes 3, 4, 5 in the first flow chart ,

40111V
and Boxes3, 4, 5, 6 in the second. These sequences Of box passed

through (or "executed") over and over again. Each loop i quipped with an

absolutely certain exit. In Figure 4-1(a) we,exit or branch out of the loop

as soon as the'variable LTERM exceeds 10000. In Figure 4-1(b) we exit

when I exceeds 1000. In Figure 4-1(b) the loop will be execuLed 1000 . ..

times. In Figure 4-1(a) it is not at all clear how many times the loop,wil

be executed.

The reason that we can tell the number of times the loop will executed'

in Figure 4-1(b) is that the loop is controlled a counter whereas this is

of the case in Figure 4-1(a). The variable works exact like a counter.

-Figure 4-2. The'Variable I

It is augmented, stepped-up,-or incremented by 1 each time we pass through

the loop. This is represented by Box 6 in Figure 4-1(b). Furthermore, Box 2

in this figure sets the counter to 1 at the start. T1, the value of, 'I,

'gives us the number of transits through the loop we have made (including the

one wet are currently' making) .

Ill addition to acting as a counter, I has one additional duty; it con-

trolsithe exit switch. Wheri I counts up to 1000, it throws the switch

allowing us to exit from the.loop. Here we'exit to a but we could

VI 1 0 I

as well pave gone to some other task. This "controlling" duty of the variable

I is seen in Box.

To emphasize the distinction,, we present still another flow chart,

Figure-4-3, in which a counter has been added to Figure 4-1(a) to print out

-a numbered list.,

411.

1

LTERM 1

NLT 0

I e- 1

3'

CLTIMM < 100d0

4

Ast

'5

LTERM

j

COPY e- LTERM

LTERM e- LTERM + NLT

NLT e- COPY

. .

Figure 4-3. Non-Controlling-Counter

We see that the variable I in Figure 4-3 has the same counting duty as.the

variable I in Figure 4-140, but it does not control the exit switch.,

We see then that the variable I in Figure 4-1(b) has both counting and

switcing duties. You can conceive of I as a switchman who has been given

the instructions, "Let the first 1000 through and then throw the switch."

The situation within, the dashed lines of Figure 4-1(b) occurs so often

that we introduce a special box to thethe work of all three boxes.

4-1

"Initialization" or
setting the counter

to start '

- InTesting" or
exit switch

And now!

Figure 474. Entry° Iteration Box
,

entry into
loop

Figure 4-5.' Birth of Iteration Box

A:

vi;

The three-compartment box in-'igure 4-5 is shorthand for the three boxes in

Figure 4-4 Such a box can be used whenever a counter controls (the exit

'!switch for) a Ioop. The exits from the two compartmenta on the left lead

into the largerccompartment on the right. We draw a schematic Iteration box

to fix the nos of the compartments.

iTeturning todourxample or the Fibonacci Sequence we find that.Figure 4-1(b)

can be replaced by Figure. 4:6.

START

ri

LTERM 4-1

NLT 4-0

0-1
I 4-I -7- 1 I < 1000

T

tl, LTERM

4 '

*4 J.

N'tOPY 4- L TERM

LTERM LTERM + NLT

NLT 4- COPY
;.0

c

ow

Figure,4-6. Fibonacci Sequence Algorithm with Iteration 134'

-
ar

O ;

,

6

. a

, .

o

4-1

In Figure 4-6 Box 2 replaces Byes 2, 3 and 6 of Figure 4-1(b). If

you have understood what,it is that an iteration box dohs, then Figure 4-6 =.

Should be easier to rgad than 4043e 4-1(b): Weill soon see that iteration

boxes make flow charts eaSi.ir to write, too. For, whenever we realize (or

even suspect) that we have a bop controlled by.a counter we draw the iteration

box and try to hang .the lolopon it.

-"`

We must remember that the heart of the loop is in t computation portion.

The,-iteration box merely represents the in and out mechanism. However, such

a flow chak as the following is possible.

44

N.
Figure 4-7. The "Little Dandy" flow chaft

s-

-

The best that can be;said of this "algorithm" is thathaving no output,

it saves paper. This flow chart does show us that we can initiate with

integers

integers

other than 1, increment with integers othei'' than 1, and exit on

other than 1000. We give below a diagram showing the most general

formi of iteration box generally-used in thiS, comike.

I 4.-N 2ric

F

1 > 7 - L

r 4 1 4 3
,e

N

a

.

a

e"

O

162

1(J4

- O 4-1

-Exercises' 41.1

. ,
"------

1.' The instructor who gave our first, problem for computing and printing

. .
(D . 1/A2 + B2 +`' C2

n4hrptates roblem this way: "You are given 5d different sets 9f

-data ccinsisti g cif four items each: An identification number ID, A, B;

and C du nteetable.ha'ving five columns of numbers: ID, A,

B;C, and the Computed value of 'D., Each printed line in the table is to

correspond to one input data set.and,the computed value of D.", Your jbb

in this exercise is to draw a fl W,chart for this computation, Use an

y four flpV art boxes are needed (nit countingite ti9,n=box.
^ea

and .

. %
Redraw th flint chart you made in Problem 1 to achieve the following two

impi-oveMEAs in the algorithm simultaneousl
.

..

e 'N sets of 'data where N is any integer (within reason).

)

(a) Han

(b) After printing the table, print out a message "EROF TABLII14.4.

return toccept another group' of N' datahere N maysnow
have a.different value.

AIn ,Figure'4-6 we studied a way to generate the terms of the Fibonacci '

Sequence. Now you are to flowchart a related algorithm: Generate both

the Fibonacci Sequence and its sum sequence. Let F
I

be the Ith term

of the Fibonacci Sequence. Thus, F3 is 2, F4 is 3, F5 is 5,4etc.

Let S
I
'be the sum of all terms of the Fibonacci Sequence up to arid

including the' Ith. term..

! 4

t S . Se
7

= 1 +,21 il ? + 3 + 5 . 12

44 1

S6 ! 1 + i l . + .2" + 3 + 5 +'8 . 20, etc:"

.
- t

Each term of the S-sequence is a cumulative sum. Your flow chart should'

generate pairs of values of these tvo sequences and print the pairs as

" they are geneiated. The fir'st pair to bet printed is F3, Si, and the
.

second is .F4, S2, etc. The algorithm should terminate after printing

60 such pairs.
.

,1

.
i It' ,"

As -an added challenge, see if you can write the flow chart without ...%

using subscripts. ,

............
.4,

,.......,/
f

t
f' J

163

1G

.10

4-1

.0
4. Recall Figure 3-24(b) which was an algorithm for computing le points

won-or lost in one spin of the carnival wheel (i.e., fof one data pair

S and M). This algorithm allowed us to have an arbitrary point rule'

by input of four vallies into vector elements Pl, 1"2, P3, P4.

Now suppose we are interested in datermining'our.spore after a

'large number, say N, of arbitrarily chosen data pair's S, M. r the

moment we won't concern ourselves with where these data pairs came from.

Your job is to revise,the flow chart in Figure 3-24(b) so that it now

does the following:

:(a) inputs values of P. for a 4-point rule; °

(b) determines a point value for each ot N data pairs S, M and,

instead of printing these values, forms their sum in (SUM);

zifter.the,N data pairs have been "processed", prints N and

SUM using appropriate literals to explain the significance of the

values that are printed. For example, hAfter 35 spins your score

is 52 -points."

(c)

*

If you can't fight your way through this exercise just yetpostpone

it until after you haie done severer* the exercises in'Set A of the

next section.

5.. Simplified Mode). of Payroll Computation.

The workers in a plant are assigned humbers.from
,

N. Let Ti

be the number of hours worked/by worker number i and let R, be his

hourly rate of. pay. The payroll .department wishes to inputthe time.

data from the Time-keepersi Department and the rate figUred from the

Personnel Department and output the-weekly wages for each worker and the
a

total payroll. ,Dwaw a flow chart to do this job.
.

You may assume that
,,k

the Timekeepers' data comes in the form of an ordered list ofthe T
i

'

from 1 to N and that Personnels' data dedOnd ordered list of.

the R
1*
s from 1 to N.

;164

,1 i6

-1

4

4-Et2 Examples

4-2

In this section we wish to present a portfolio of examples illustrating

the iteration box. We prestnt them at a rather brisk pace and they will get

gradually more complicated. In order to make what we wish to emphasize stand'

out, we will usually present only fragments of flow charts. Consider the task:w
Given N numbers, print out these given numbers and their, cubes, thus in effect

constructing a table of cubesi.

Suppose the list is already stored in the computer's/memory; in locations

belonging to a subscripted variable, Xi. Then we will run through the sub-

scripts reading out of memory the values of, the Xi, and making the desired

computations. This suggests the use of an iteration box with the loOp variable

614' the,running. This is shown in 4-8(a). In Figure 4-8(b) the same compu-

tation is performed with the data stored on cards rather

o

than in the machine.

I 4 l J 1

1+3.
J. J:4.1 °

Y X
I' X, Y

lioY 4-%3

(a) data (b)From internally stored From external data

Figure 4-8. Making a table:ofcubes

v.

Notice that in Figure lis-8(b) the loop variable is nowhere to be seen in

the computation portion of the loop. Figure 4-8(a) provides out' first exper-

ience with a-common occurrence, that of a loop variable going click, click.

click through the subscripts of a'Subscripted variable.

t

3.65'`

We see this again, in fact, in'our next_two examples:, Adding up a list

of numbeis already stored in memory, and, second, finding from a listof num-

bers in,memory, the maximum of their absolute values. These are flowcharted

in Figure 4-9. If you have trouble understanding this loop, TevieWFigures

3-24(0. and 3-25 where we first discussed an algorithm lip this one.

SUM 4- 0

0

-2 4

J 4-

< N
J+1

SUM

MAX

J 4- 2

J + 1
J <

1110.L>

IT

5

MAX

MAX - A I

(a) The sum of the comp9nents (b) The maximum of the absolute,
of a.vector ' values of the components of

° a Vector

Application of iteration bores to calculation
.

with vectors (subScripted vaniables)
e

.

There is,a fundamental difference between the algorithm of.Fignre4-9.

and those of Figure 4-8. In ai' transit of the loops of Figgie 4-8'nouse is
. .

t made of calculations made'in previous.transits, whilethat'is certainly not

.thecase in Figure 4=9. :
. ,.

,, We find. Figure 4-10 two variants, Figure 11-9(b): `The' first shows:

the modification of Figure 4-9 which must be Made if we wish to 1print oirt.the...:'

value of J for which IAJI is the maximum The second shows the,algQrit
..

for finding the maximum value of, 1.40.1,'.but over only., even valdea of J.
.. .

-
,

166

1 8

MAX AlI

INDEX 1

J 2

J 1

> MAX

5

INDEX,

MAX

MAX

_INDEX J

MAX e-

J 4-- 4

J<-- J +
J < N

T

4-2

> MAX

MAX +-A
J

(a) Outputting index (b) Maximizing over, even subscripts

Pignsp_4

Notice the connter we used in (b) of Figure 4 -10 counts by 2's and not by l's.

The-fill& of the loops of Figure 4-11 exhibits the-calculation offactor-

ials and the second is borrOwed from the Fibonacci Sequence algorithm of Figure

4-6. '_These algorithms snare the property that no data is injected (storad'or

t....--'111qernal) after first entering the loop.

1

FACT."<-- 1

.,

'IC 4- 1
< N

K 4- K + 1

4-

K, FACT PACT K X FACT

LTERM *-1

NLT 0

K 4- 1

K<--K+1
K <N

F

K, ,LTERM COPY LTERM
LTERM E-. LTERM + NLT

NLT 4- COPY

(a) Computation of fa4ori4as (b) Computation of Fibonacci Sequence'

Figve04-11.. Loops without data

167
-

169.

4:2

Exercises 4-2 Set Ar
. You have in storage two columns of N numbers each. One column is

called 'P; 'the other Q. For each, problem in this set your job is to convert

the word statement to an equivalent partial flow chart. You should find the
t

iteration box helpful. You May wish to first flog chart the computation part

of the loop, bell -2TaTig it from the proper iteration box, and fihally precede
)

the iteration box, if appropriate,opy an initializing box.

1. Think of the I
th

value of P an he I
th-

value of Q as the pair
-

Pi, Q. Interchange the val in every such pair.

2. Modify the flow char

interchanged.

awn for Problem l'so only even-indexed pairs are

es it matter whether N is even or odd?
V

3. Modif e flow chart drawn for Problem 1, assuming you wished to inter--

change only every third pair of values beginning with the fifth pair.

4. Move the first [N/ elements of th6 vector P to the vector Q.

See.picture 4-12).

l o q
13 44- -

2 4,...

3 '9 ...

. .

.

. .

N-1 9

N 10
. .

Picture of memory
before "move"

1

2

3,
4

3
4

3_9_ _9__

..
.

N-1

_
N

_.9...4

10

Picture of Memory
after "move"

Figure 4-12. Moving elements of°a vector

-5.. Move the last [N/2], elements of the vector. P to-the first [NAT

positions of vector Q. Assume N is:even. Hint: What is the index

of the,first element of P which to be moved?

6. Same problem as Exercise 5--but don't assume N is even.

168

17 O.

412.

7, Let each of the last K elements of the N-element 'vector P be

"shifted" or moved tlo positions in memory to make room for the lAter

insertion of two new values, at positions "N - K + 1 and N - K + 2.

,See Figure 4-13.

LAST

ELEM64/

P

/2,
/3

5

/.2

/3

iz
/3

ttT

Picture of Memory ,Picture,of-Memory

Before move ,After,movel

Figure 4-13. Shifting elements-Cfa vector

8.- via have aIready/stored 106 input rvalues fox nts P.,
P2, /?100.

(A) Form the sum of their cubes (in'SUMCUB5::,.:,

(b) Form the sum of the negative values (6WSUMNEG).

('t) Form the sum SUMCUB, SUMNEG, and SUMNEG (where SUMBIG is the sum of

the Absolute values greater than 50- in magnitude) .

9. Refer to the flow chart you constructed in Problem 1, Exercises 3-6."

Redraw tEe'-flow chart using an iteration box (sum of entries in the
th
K column of the matrix P except for element in Row 12.)

10. Refer to,the flow chart you'constructed,for Exercise 2, Section 3 -6

Redraw the flow chart using an iteration box (replacing entries of the

L
th

row of matrix P try the sum of Row L and Row M entries).

169

1 7 1

4-2'

.11. Refer to the flow chart yo constructed for Exerdise 3, Section 3-6.

Redraw the flow chart usin n iteration box (replacing entries of L
th

row by sum consisting of Row L entry and 2 X Row M, entry, but leaving

Column K entry of Row unchanged).

In each of the following two exercises assume there are N- values

currently assigned-to the P vector 'in memory. .,

12. Search the lig in thp fotWard direction, i.e 'Pl' P
2'

P
3'

etc., for

the first value greater than 50 in magnitude, assigning this value to

W anA 1 to ANY.' *If no such value is found, assign 0 to ANY. In

',,,,a4her case now 'proceed to the same point in the flow chart.

13. ?Search the list in the backward direction, i.e.,
PN' PN-1' PN-2' etc.,

for the first value greater than 50 in magnitude, assigning this value

to W. If no such value is found, assign 50 to W. 'in either case,

now proceed to a common point in the flow chart.

14. Search the N elements of the P vector for the non-zero element of

largest magnitude less than IMF. AssUMe the value of M has already

been stored in memory. Assign the value of the vector element found

in this search to T. If no such value is found, print the message

"NONE" and stop.

I

15. Search all N eletents of the P vector for the element which is the

largest in, value and is still less than the value currently assigned

to M. Assign.the value found to T. It none is fOund, print "NONE"

and stop.

In.the following two exercises, assume that all entries of a matrix Q
tt

are stored in memory. Q has M rows and N coluMns. 0.

6

' v't

16. Search the L
t

row of Q for the smallest value. Assign this value-
rs:

to ,SMALL. soLo,

.17. Search the Rth column backwards'(i,e., trom bOttom to top) for the

first entry,.if any, that is at least as large as the current value of T.

Assign the row value for this entry to ROW and the value itself tbr BIG.

If no such value 'is found assign. the value zero. to ROW.

170

J

vZfc

We have now seen a number of examples illustrating the use of.iteration

boxes. But how, in 'the course of drawing a flow chart, can' we tell whether

an iteration box will be useful? The answer is that, we will want to use an

iteration box whenever Zhave a loop controlled by a counter. Whenever this

-situation exists (or when we strongly suspect that it does) we draw the

iteration box and try to hang a loop on it. We may draw the iteration box

before knowing everything that goes inside it.

As an example, consider the problem of finding all the integer factort ,

of a given integer N. If N is large, this task is very tedious, as'you

will know if you have ever tried it. We will be very glad, therefore, to

have a computer do the job for us.

The word statement of the algorithm for this problem is very simple:

Go through the integers, 1, 2, 4, etc., checking

each olle to ditermine whether it is a divisor of N, and

if it is,write it down%

Now for the flow chart. Since for each integer we must check whether it

4,---wa-nave-a-repetitiv-prouesa, a loop:--Betause-Tearfoimitte--

'calculation for 1, 2, 3,4,. etc., it would seem that our loop is, controlled

bx a counter. Now we draw our iteration box, noting that we are not yet sure
4w

where-to stop,

K 4-1 F

K<_K<-K)

iT

Of what does our calculation consist? Of determining whether K is a
1
divisor 4' N. But how shall we express this question? Well, for K to be

a di:visor of N means that N/K is an integer or, equivalently, (N/Kj= N/K.

Thus,

is equivalent to

te,

K is a divisor of N

N = K x [N /K].

4-2

C

We put this in our flow charts

40,

K 4-- 1

K <
K 'IC + 1

Now we come to the important question of where to stop our computation.

e cou go a e way o .e., we cou put N in the empty space in

the test compartment of the iteration box. Then if N' were a million; we

would have to go through the loop a million times. Must we do that? At this

point a look at the mathematics of the situation will help.

Whenever we find one integer factor of N, say K, we have really found

two, because 11/K is also an integer factor. Moreover, these two factors

cannot both be less than

=which is a contradiction.

greater than 4.

Thus, whenever we

factors is < IN

as far as f in

the value of N/K

Our complete

A, else we would have

N = K x (N/K) <V X 4N.= N

By thethe same reasoning, K and X

%

K are not both

If they were, we would have a similar ontradiction

N-= K X (N/K) > A X ,= N./ ,

woress as the product of two factors, one of thege

and the citkeeis '7A. This Means that we only have to go

our search for factors if, in our outilt step, we print,out

along with each factor K.

flow chart is then seen
/
in Figure 4-14.

/

BOUND A

"TH FACTORS

OF", Njs "ARE"

K 1

K + 1

4

K < BCUND

las

4-2

0

N = K x [N /F1

4rT

4N/K

L

°

sTigure 1+-14. Finding the factors of

We see that if N were 1,000,000 we would now pass through the loop

only 1000 times. ,Quite a saving over our original plan to pass through the

loop a million times!

.4

4-2

The last, example of this section is the problem of evaluating a polynomial.

We will illustrate our methods with a third degree polynomial and then general-

ize to N
th

degree. Consider the expression:

Ao + Ai X X + A2 X)e + A, x X3 .

After values are assigned to the components of the vector A, this expression'

represents a polynomial of degree no greater than 3. Next, a value is assigned

to X; the polynomial,csn be evaluated.

We first describe the usual method of performing this evaluation. We

evaluate each term in the order written, adding this value to a cumulative sum

of the terms computed so far. We also keep the last power (PWRX) of X com-

puted to simplify the computation (:)-the next higher power. This process is

obviously controlled by a counter which runs through the subscripts of A.

But should we initiate the loop variable at 0 or at 1 7 There doesatt seem

to be much computation at O. Our thoughts so far are shown in Figure 4-13.

5

PWRX 4-- X x PWRX

SUM 4-.SUM + AK x PWRX

Figure 4-15. Pieces of polynomial evaluation

174

1 T-C.)

tt

b ,

Box 5 in Figure 4-15 contains the entire loop Qalcalation. Our decision
.

about what initial values to Ao SUM'reld BWRX delideb the question

of how to initialize K in Box 4. Now we can draw our flow chart (Fig. 4-16).

......

9

I = 0(1)3)

2

X

-3

PWRX 1

SUM 4- A

NOM

K

K + 1
K<

I

"THE VAIJJEF IS", SUM

PWRX X ,x PWRX

SUM 4- SUM + AK X PWRX

4,
Figure 4-16. Evaluation of polynomial, everyday method

It should be obvious how we can generalize this flow char .to work for poly-

nomials of arbitrary degree. We have only to +plhce the occurrences of "3"

in Boxes 1 and 4 by "NP, and.input N, either in Box 1 or ahead of that box.

Instead of ,,stopping we could, of course, go back to get another value Of X

or to get another polynomial.

4-2

*Y Now that we have solved the,problem we ask (as usual), "Is.there anothel!."

way,to do it?", T4pre;is, in fact, anotherway, and most-elegant one. We

thke a polynomial 6.

Q 4

0
x + B

1
x 4 B2 x X.+ B3

and express it in'the followifig way.

((B0 X X + B1) X X+ B2) x X+ B3
0

'You will have to satisfy yourselves. that these, two expressions are equivalent.

The second of these expressions is in very inconvenient form for all =dm-
.

matical purposes except evaluation.

In emstructing the flow chart, at each steps the variable VALUE ;epresents

the ;umber that X"is being multiplied by You mighteri,loy trying to draW

flow chait yourself before looking at the solution in-Figure 4,47.

`4'4010A

O

10

a

O

1

(B,., I=0(1)3)

3
VALUE =

K<-1

K + 1
K <

5

S'
F :'TEE VALUE

IS", VALUE

VALUE 4- VALUE X X +

4,

0

Figum.4-17. EvaluatiOn of Polynomial,'SUnky method,.

176)

4

or.
-4-2

Again, of course, we can generalize to degiee N by ;eplaqing the occurrences.of "3" in Boxes I and.4 by "N" and inputting N prior to (or,in) vBox 1.

-
Now let us compare the two algorithms. Certainly, the simplicity of the

Computation in BOx 5 of Figure 4-17 appeals to our esthetic sense, but in the-

last analysis the key question is, "Which algorithm use the leaSt'codputer.

Mime V'

To answer this, comibare'the computation portion (Box 5),of the two loops.

. In the first method there will be two multiplications and one addition for

each transit of the loop. In the'second method there will be bne

tion and one addition in each transit of the loop. The second (Sunday) method

is therefore shorter. If the polynomial were of degree N, it would save

multiplications. And if you intend to use this algorithm to-evaluate many

olynomials, -11e44 tae second method will save a number of multiplications

equal to the sIamof the degrees of all the polynomials to be evaluated.

Exercises 4-2 Bet B

1. Given a set of N values of a vector X, i.e., XN, and

-given a value A,

(a) draw a flow chart for the computation-of NUM defined mathematically

as an N-term'product:

NUM = (Xi - A) x (X2 - x (X3--.A) X' (XN - A)

'Show input and output of all required data and results.-

(b) Same as (a) except that NUM has the Kth one of thsl, -N terms- .

omitted. ,

2. Suppose in the preceding exercise you are toldothat the given value of
,

A is equalto ,Xic. What data value, i-equired as input in 1(b), isnd

.longerneeded? 'Redraw the flow chart to display the computation of DEN,

which is defined the same as NUM, except..ilc = A and the term

is olliitted.',

T

.0

A j
e

1

b

4-2

11,

3. (a) Preliminary. InTroblem 4, Exercise 4-1, you were asked to spin the

carnival wheel N times. Did you finish this exercise? If not,

do so now before going on to the main task described in the next

paragraph. :

(b) Main. We begin now to develiop more seriously the concept of simulat-

ing thesPlaying of a game for the purpose of predicting,Ath the aid '

of a computer, something about its outcome. It's a "spinning wheel
4

_game". Imagine you are given an inexhaustible supply of data pairs,.

-s, m, for input. These data are somehow representative of what a

person might actually experience if he were to take turn's spinning'

the wheel with one or more other players. We will say...that a "game"

consists of a series of spins for a given player and terminates when-

ever the magnitude of his score, ISUMI, exceeds some given critical

value
r

CV. We shall say that the "length" of the game is the number

of spins in the !series.. The question we really want to ask is: How

m4ny turns'on the average" can a player be "expected" to take before

CV < 'sum' ?

In this exercise you are preparing'the groundwork to answer the

question later. Your'Job now is to draw a flow chart that simulates

oke complete game. The paragraph below contains some guidelines--to

3

be consulted only after you have experimented with a plan ofyour own.

(1) As in the earlier exercise, first input the four Values coh-
.

stituting the "point rule" to be used.

(2) Next input a value for CV, the critical value. o.

(3) Then input a series of data pairs, s,rm.

(4) After each data pair the new value for the net winnings (SUM)

is computed and,a counter df the number of spins is updated.

(5) Whenever the absolute value of SUM exceeds theCV, we .print the

values of L, CV, end.SUM.and then stop.

(6). For insurance against an endless:lopp, 14e print out an error

message and stop if ever L exceeds :1000.

Remember to use an iteration box where you think it can help
1

to keep the flow chart Simple in structure.
0

er

178

0

/
4-3

4-3 Table-Look-HE
,

V .

Aw We begin an algorithmic investigation into the subject of table-look-up;

the looking up values of a' tabulated function, Such as when we "go to the tables"

to findhe value of sin(.3217) , or of A47.62. - r

. ,

P

Example 1. Table-look-a la matching

Our, first, example of table-look-up does not even involve an itera-

tion box. We hakie a function, F, and as in common mathematical notation

we write

Y = F(X) .

Now we have a stack Of cards, each card punched with a value of the variable

0
X and the corresponding value of Y.

0

X, Y

M
This means that each card represents an ordered 'pair of numbers (X,Y), related

by 4 = F(X). No two cards then can have the same value of X punched on them

unless the values of Y are also'the same. This is Nhat is meant by saying

that "Y is a function of X": The stack of cards can be .regarded as a table

,o values of the funCtion, F.,

Now-, to look tip the functional value of a, certain number one method

would be to go through the cards comParinit this number with'the value of X'

on each card, and, when equality is found,.to print the corresponding value

pf Y. Figure 4-18 is a flow chart for thii process.

5
"Tlit VALUE OF

.

NO

YES

4 T

1<X

c

Figure 4-18. Primitive Table-Look-Up

179

/31

4-3
- - _

Any flow chart to read a whole table into storage will use subscripted

variables. We suppose that we have a stack of karda with two numbers XK, Yi

punched on each, and with XK and YK satisfying
- _

YK
=
F(XK),.

.Notice that the subscript changes each time a card is read. Data from differ -

e nt cards goes into different window boxes. If 1000' cards are to be read,

then 2000 window boxes must be made available to receive the data on them.

E.73
For our flow chart language we introduce a slightly different type of

input box.

(XK, YK, K = 1(1)N)

0
'Figure 4-19. An input step for a stack of N ordered

pairs of subscriptedyariables

Though we have not seen ah input'insifuction quite like this before, it is

clear that its effect,is equivalent to the following combination of boXes:

c

K 1

K
K < N

YK

,180

1 82
0 ',,,

4-3

Once the table has been read ini we select value for which F is

sought. We eompa 6 this value with each of the XI til we find equality; "
-

then we print ou the value of Y The flow chart i seen in Figure 4-20.

6

I 4-1
.

I
I .4- I ÷ 1

< N

r\

0

Figure 4-4 Look-up,fram inte9ally stored table
, 4 ,

:4 .

'I4 '' '' di'.1
., s i .1

1., .1 i) i

1 ,
t'''

,,, ,

iteration
.

..'4' 1Whitt is important iii:the way II which-the iteration box helped up to
.t.

-4-0 , ,
). .1

1,,

draw th'er flow chart. Notice,-however, that there is a second exit frOm the

`loop bekdes the' one from the'iteratignox. ';

.)

/.

1.9
1. . 3

01,

4-3

In Figure 4-20 we could have.gOne back for more values of A instead

of stopping.

9ample 2. Table - look -up: Bracketing box entries in an ordered set

Have you ever had to lo6k up values in a table? Suppose you are

given a value of X, and you want to find the value.of sin(X). What helppens,

of course, is that you don't find your value of X listed. So you note the

nearest listed values above and below, and write these down together with their

functional values, as in Figure 4-21.

your given '

value -___17-&-.5836

of X

(a)

X sin(X)

-
.5760 .5446 i

.5818 .5495

.5789 .5471 .5836 2

.5818 .5495 , 5847

.5847 .5519 i"

.5876 .5876

What you see in
the table

Figure 4-21. 'Reading,a table

Now you usually "interpolate"

of sin(X) in the same proportion

uliped values of X.

<

We will construct a flow chart for instructing a computer to

except the final interpolation. It would be easy to instruct the

perform this step, too, hIllt.we want to focus our attention on the

problem. We. will print as output the.nuMber whose functional value we

(b), What you write
down

aivalue'between the two tabulated valuei\,

as that interpolated between the two tab -

0

do everythi4.

machine to'

table-lOok-up

wish to
a

find, the closest tabulated values of X, above and below; and the correspond-

inging values of Y.

We will assume in this problem that the values bf X are arranged (indexed)

in increasing order. We input the table

5

4 . ' 3
11

.Ow , (Xic," YKt = 1(1)N)

1'

fe,

I

and the value we are looking up in the table

Our task involves comparing A with successive values of X._ Ag..,

have a loop that can be controlled by an iteration box. The coMputatib .con-

sists merely of comparing A and, X, and printing out the desired information

when we bracket A' between two tabulated values of X. Of cours- if ye hit

A on the nose we output that information, too: The flow chart in 4gure 4-22

is self- explanatory.

START

(XK, Y;, K = 1(1)N)

<A

I < N

T
5

Xi VERSUS A

6 ,x1'=" A y

>A

HF(u,A,U). is",

II,'"od the nose"
XI-1)

A,

71 .1

I not in the

domain of F."

Yigue
L

4-22i simple scan table-look-up in
an ordered set of values

e

S s

f.

4.3

Exercise 4-3 'Set A

/

c' /

7'

Improve th!kflow chart in Figure 4-22 so the in place of Box 9 we will

pint
,

the interpolated value of Y (call -it YIN along with the value of A.

Higtr Figure 4-22a should help you to see how YI may be Computed.

Figure 4-22a. Illustration of straight line interpolation

,

illframple 3. Table-look-up - bisection method

And now we ask the same old question. Can we improve on the algorithm?

Letts compare the algorithm with what we do in real life. In the algorithm

we'take a value of A and start at the beginning of the table and compare

with each entry. Ts this what_we do in real life? Take the analogy Hof a

telephone book. We want to find the number of Tom Spumoni. Do we -tart at
-

the beginning (Figure 4-23) comparing SpumOni with each entry?

,
A

AAAA Cleaners '23475678
AAA Auto Club 355-2320
Aardvark Mot s

Aaltol:Ison, Do

591-4378
567-8901

Abacon, James 456-7890
Abernathy, P. _2881.1108

.Ace ., .

' -.,

Figure14-23 ;kIn search of Spumoni .

fl -....., ,. ,
,

fIP time is short, the rest of'Section.473 may be'skipped withoutloss of
continuity.

r - , .
- 184

a

N

a (3CK, YK, K = 1(1)4

3

A

(X1<A<XN

LOW 4- l'

HIGH 4-- N

6

ON.

11

A,"is not in
range 'of

12

HIGH. - ,LOW = 1 11)-1---aw XE,p4A01,p
A,

)(HIGH' THIGH

F4

.MID (LOW + HIGH)/2]

of

10

- HIGH 4-,MID

4-3

SLOW 4-- MID

Figure 4=24. Ta e-look--up using bisection techriique
1y a

(Highly instructive)

151077,

1

410

. s
4-3

Certainly not What we do is split the bOok in the middle and check to see

which "half" the name isin. Then we split that "half" and so on. Just as

this is afaster-way for you to look things up, so it is for a computer.

The floW chart for this algorithm is presented in Figure 4-24. We use

two auxiliary variables, LOW and HIGH, to indicate the lower and upper indices

of the part. of the table we are currently donfined to.

On each loop ,we find the midpoint of LOW and HIGH, that is

7

and test to see whether

MID 4-((LOW + HIGH)/21

A < XmID

If sd, MID becomes the new HIGH (Box 9) and if not, MID becomes the new LOW

(Box10). Box 4 determines at the outset whether' A is in'the range of the

table. Box 6 is the stopping mechanist. When HI LO = 1 we know that A

is bracketed between -1,41D' table entries with consecutive subscripts, i.e., that

Xt0 5. A 5.

The computation portion oltheloop (Boxes 6 through 10) exhibits the

'flbiseCtion technique". Study this computation until you are sure you under-
-.

stand it. The idea occurs over and over again in computing and often rep -

'resents maximum efficiency. youl'll see bisection again in Chapter T.

4
It is interesting to compare the efficiency of the algorithms in Figures

4-22 and 4-24. The loop of Figure 4-22 (Boxes 4 an 5) will be passed through

N/2 times on the average. The loop in Figure .4 -24 will be executed a'number

of times equal to or one less than the number Of digits required to express N
d\

in the binary system- For example, if N is 1,000,000, Figure 4-22 requires_

19 or 20 transits since
219 106 220.

There is no iteration box in the fldw chart of Bligure 4-24. The reason is

that the loop in this algorithm is not controlled by.a counter., There is 4

vatiable lesson here: You should nottry.to force algorithms into iteration

box form when it seems difficult to do so. Iteration boxes are not useful in

all loops. They are useful_onlyothen the loop is controlled by a simple

counter. ;

;

Jar r .

:186

f'38 ;f

4-3

Ekercise 4-3 Set B

You may have noticed that the algorithm in Figure 4-24 lacks one feature
exhibited by the one in Fre 4-22. That is, in the latter, if, an exact 'match

, founds message like :

. "F(24.2) is '39.213 on the nose"

is printed.

' 'Your job in this exercise is to redraw Figure 4-24, or whatever portion is
netessary, with the "on the nose" feature added,. .;

ifExample 4t Table-look-up in an unordered set of values
.

+.0?

Suppose that the values of ti had
s-not been, i,ndexed in increasing order..--

This sort'of thing might happen if the table were constructed out of empirical!
data collected by a number of irivestigators.,,

-/There are two 'different plans we-could follow:

We could 'look up our value in the tableCs-it stands:

2. We could first sort the 'data, accordg to increasing,values -,.. - .of)q and. then look up in the' sorted table.

The first plan 1.4111d be followed' took4 up a very small number of
-.7- .-. 2' ., i:values in--the table. When many values are to be looked up, the second plan is

much shorter~` _ (.

sorting
I , *Ifwe sort the data first,'the oing could be l'olloiredl?y a bi-

sectionsection look-up algorithm as in 'Figl.ii; J -24.# Sorting' has already,been discussedVP.. ' :.

in Section 3-5 and will be "di,scussedkltqh.er.n Section 4-1ka. We turn, our atten-
tion now icithe 'first plan. 12;...`"/ 7.: . 7:01.

-,Y."2:'.Our,goal here is the same as inItli4:aj ;i.Ihrli.'of Figure 4-22. to squeeze
A' 6' tightly as` possible betWeen two :tablins. values of . X.,.,

- ,
''..;k3 N",', .'i l

.
Xi < A <

The difference here ,is that we will know thttV have' attained our-result,
,,..,

--,
,

., only after we have scanned the .entire table.t rrtkrthermaile, rjo bisection tech- ,)
. , ...

' ni'que can be used here, since the ,values of;-:X.kt aie not 0.n.da,xell itralay order. t's ; ,,..,

i). ,
t i '0,, ,, I

JIIf;',iimeI is, ahort', this seiction fan be skippl,u'dfwithout lois 'of continuit
7

r

4-3

N

1

2

fxK, = 1(1)N)

LO 0

HI N + 1

4

XL0 XHI

A

6

SI

4

I < N

< A

1

xi a xa

LO

10 t

F

13,
A, is no in

the range of

the table"

14

-111.

12

XL0" YLO

A,

XHI' YHI

HI

4Figure 4-25. '1,01-up in, an unsorted table

1.
e

I ttU
' L

TE .

4-3

,

In constructing this algorithm it is assumed that the maximum and minimum

values- of are known and are input as XLO and

XL0 5. A <)(HI .

XHI Now we know

We proceed to scan %the ofthiltable replacing the value o LO with that of I when-
.

ever we find

XL0 < Xi'< A .

000"

Similarly:' we replace HI by I whenever A ' I < XH1. Since we are scanning,

-the entire table we clearly have a loop dontrolled by a counter and hence an

iteration box. The algorithm is seen in Figure 4-25.

J

O

4-4

4-4 Nested Loops

By, the term "nes4ed loop" we refer

to algoxiiihms which Rye, like the

silhouette shown, in Figure 4-27, a,,,

loop within a loop. In this silhouette

Boxes 3 through` `1 constitute a loop

while Boxes 4and 5 form an ipside

loop: Remember, in a flow chartwhen-

ever an arrow goes back to a box already,

passed through, then you havesa loop.

I h.

vie

aye
le° already.seen numerous examples of nested loops of a rather

trivial kind in which the,"returPon the "outer" loop merely involved coming

back for mole data as 4rr,the next silhou,t0(Figure 4-28). Here the inner

loop congistsof Boxes 3, 4 and 5.

Box 3-is an iteration box. The outer

loop consists of Boxes,l, 2, 3, 4 and 5.

ClearlyBox 1 is supposed to be

P4

Figure 4-27. Silhex6e of a,nested
,loqp

and the return on the ou p is

merely for the purpose of'coming-back

bp repeat the same alculationwith '/'

ew sets of data.
.

V

FigUre 4-28. Silhouette showing nesting

.formed 91en returning for

1 -4

more data

,

.

The sorting algorithm or Sect*pn had a non-trivial use of a nested

loop although we did not call your attention to it at the time. It is quite

pot'sible to construct valid algorithms containing nested loops without being

conscious of the existence A this nesting. But when both the inner and outer

loops are controlled by iteration boxes we, will usually be conscious,of the

'nesting. The mos..4g natural example of this iS some systematic processing of the

entries'io a matrix. Suppose we wish to find the sum of all entries in a

matrix. First 1,e add up each row, and then add the resultixig sums.

In this example we can mentally separate the calculations n the two loops.

The inner loop, adding up the entries in a g1ven row, sefthe , 'wouldloe _

given by

J4-1

AT J+1
<

SUM + SUM,

And then the outer loop

z. 1
I < M

I 4- 1+1'

i' COMPUTE `1

f , s'... 1 1

.-,.:. --;

I

Cot

TOTAL 4--TOTAL + SRI

1
191 5

7

4-4

The dotted line is to be filled in with the inner lOop. There is nothing left ,'

to ok?, but to input the matrix,' initialize
the various SUMts and TOTAL to zero'

'and. output-the final answer. Tie flowchart is Figure 4-29, The-return arrow

for t1 inner loop gees _from Box, 7 to llox,6, while that for the outer loop'goes'

from Box 9 to Box 4.

Many computations that invOlvmatrfces have similar flow charts. lievdral '

will be seen in the next set of problems. .,

2

1

M,N

"The total

is";TOTAL

computation portion
of iteratigh Box 4

Figure 4-29. The sum of the entries of a matrix showing,

nested iteration boxes

1

192

4-4

EXerCised -4 Set A

In the following exercises you. are to draw a flow chart equivalent to
,,

4

each word pxoblem. Each involves a nested loop, and you will find it, ration,.<

boxes helpflULCAssume in each case that the ma=trix P,r having M rows and
N collumt, is alredy stored J./{ :memory.rj .

1. Search: I' for the element of largest absolute.value. Assign this $
element 'to G'and prirrthyalue of PIG., Hint:: Start by Assuming_

",the entry of largest magnitudelis-zerO. .

.. ,

.., o.
2.

,
Sea;ch. P for the element of largest value (not absolute value)ia'ssign-

.

ins -it te) LARGE., Print the 'Value of LARGE and the =w number ROW, and

column Ithbeir', COL, where this value was found. Hint: Start by assuming

the lastest lalUe is P1,1 .

4
'4

3. Search for the least non-zero eleMent in odd-numbered rows and ,evgn7-numL-

bezed columns, and assign its vAlue,to LEAST. While conducting this .

seardk,' keep a tally of the number of-zeros found,'ZTALY, and then print

value's for LEAST, and ITALY. If, all eleme9ts are zero, the value printed

LEAST shodid be zero.

4. Add a multiple, T, of'the first row entries to the entries of all other

rows of P. For example, if T = 2,,we show the action on a 4-row by

4 -col matrix
t, v

.

VS
.

,1 2 1

c d3. : 3

1
a '

1. 2 1 1

5 5 8 4 7

-'
2 3 6 3' = 4

g 5 . 5, 5 4y1,y1,

----e*---

(
---,4

) 'bellore

isactIO

I"1'm.. .'
,

Zr: ,

193

after adding
row to

each,of the
other rows

I

;

4-4 4 .

Determine the minimum value in each column; MI4, of the matrix P and

sprint it out with its row and column identification, ROW and COL. If

7

tpere is more than one occurrence of the minimum: value, report the last

one found. 1For the 4-x 4 array shOwn in the preceding exercise in the

"before" state, the desired iutput for thid exercise
- N

MIN ~'ROW

1 . 3
1
1 3

1
3
4

be:

6. A matrix which has the same number of rows and columns is called a "square

matrix". In the next three _exercises we shall.assume tha t ,is square. -_

(M rows and M columns).- The "main diagonal" of a square matrix 1.8 'a line

of entries each having ,eaual anti column subscripts; Pi-I,

. 3,3'

.th
etp. The ...elementon the main diagonal can therefore-ha=efer-

red to as Pi

Assign to SL1 1 the sum of all entries to the left-of-Ishe -Main diagonal

of the square matrix F, accumulating the terms-row by row. Hint: '_Make

yoursYlf a picture of the triangular group of entries that fall in the
_ .

category to be 'summed.., What is the first row involved? What is' the last
. _ , -,

column involved? For any row to the left of 'the main diagonia,-What are-

the subsefipts of the-rightmost entry.2, .
4 ::.--- - .

.

7. Form the sum of all entries which are, situated to the right of the main
,, _ ,... _

.

---:-.. ,

diagonal of P, accumulating the terms row-by-row. (Refer to Exercise 6.)
,

8. The "triangle" to the -left of the main aiagonal

Exercise 6 is often called the "lower triangle

of the main diagonal is ofteri-called the "upper

cise we wish to search the upper triangle. column -by- column starting, from
.

the last column, life-will search eacli-,e,- oluian-co- top,to bottom.,tor' the

first entry that is at least-twice-as large fn magnitude as its immediate

entry which exhibits this increlletd.

which you worked with, In

and the one to the right

triangle", In this exer-
.

predecessor in the same column., An

magnitude .will bp_ termed a-PIG
tt

-A PIG-can adart-ilrilyilarrttir Lagos:t. -4..oltiuur-Uk-the---upper itc

Print all valu4 of PIG as -they ,are discovei-pd along with their .rOw...and--e-r-

coluMn' subscripts I and Z. 1 found, print "NOW. What

the' pmallest matrix-which Can have a PIG? (Answer: a 3 x3:) Hint i

search a column fir a PIG can the top element be one?' What is the i-ow.

subscript for the bottommost element in the J
th

column?

isA

To

4-4

The Stickler Example

Next'we give a little problem to help drive home the power of a computer.

You will recognize, the problem as being of -1yrs4 ofteh encountered in algebra

:CoursesAand puzzle books). _/

STI 11 the three-digit numbers which are

equal to the sum of the cubes of their digits.'

T5e.reasop-Stich a problem emphasizes the*Iower of a computer is that this

pr'obleMrAholigh possible, is extremely tedious to do by hand calculation.

However, it ig a trivial problem for a computer and the algorithm is absurdly.

eery to write.

If we let the digits of the number be H,,,T, and U, then the three-digit

number is

100.x H-+ 10 x T + U.

The problem then is to find and print.out all the triples of digits (H, T, U)
:.,which satisfy the condition:

i-

\4 1 .
100 x H + 10 X T + U = H 3

, T 3
4.13

Consequeptly, we woi1d expect to find in ourfikk,chirt the structure shown

below. 'N
"

. .,

....

100 x H + .10 x T + U = H3 + T3

H,T,U

I

Figure 4-30. Computation for the Stickler

This is, in fact, the only computation performed in this algorithm. - The

rest o£ the problem merely mattes the various values of H, T, and U available

for the test of Figure 4-30. The process of making thesvalues availolble in-
,

vdives nested loops% ThigrocesZ can be des'cribe'd some at vaguely in words,

as: When a value is assigned to H, we then let T "run through", tbi digits

from ;0 to 9 add:when values are assigned to bath ,H and T we then 1.et
,

U "run throufih":thedigits from 0 to 9. In, this explanatian we are trying:
.

ee.

to'explain briefly,the process of counting as performed bY the odometeron a

. 7

4-4

4
car where we consider each rotating wheel of the odometer as ,a variable and

4
the valde showing as the valueof that variable.

1

I

Thiscommopplace idea becOmes evtA"cfearer _in the flow chart for the:

algorithm given in Figure 4-31. The initial value of H is /- rather than'

zero because we are looking for,three-digit umbers,

7

I.
START

H F. 1

11(--H+1
H < 9

T

T e- 0 s

11'.< 9
T 4- T+1

,

1J (- 0 - ,

U< 9
U (-- u+i

4

Figure 4-31: Flow Chart for? the; Stickler-',

.

777-7A''.

The
. . . 1

TAle stickler does got require any ingenuity- -ifterely'bru.4e force. The
. .,

) .900 computations required in the algorithm would prpbably take all day, by hand,
. ,,, '

but a fadt computer would complete the calculation in less than a setohd.-
. "

4 '

.

t

3

'Exercises 4-4 Sat B

4

.19

Re-examine Figure 4-31 and'answer the

1. How many.multiplications are required

2.

3.

6,

How many, differellt-velues of

4.

following questions.

from

H3 ,are computed from .

How many different values of T3. are computed from

4. Revise the algorithm so that the same

and the same value of
'

5.

to

4-4,

value of H3 is
.

T3\ is not recomputed more than

3.Howkwould you revise the algorithm so that n9 value of H., or U3'. .

,is ever cdmpated a second time? Hint: Compute all values, 03,13; 23,

93 and store them in a separate CUBE vector hawing 10 e1ements,,

never recomputed.

10 times.

6. See if you can-reduce the total number of multiplications to 119 using

no More.than 9 different bctces in ,the flow chart.

.

7. Draw a flaw chart 4 the following:

-(a) Find the number of distinct (i.e., Netwo congruent) triangles with

sides.of integer length and no side greater tian 100 in length.,

(b) -Find the sum of the perimeters of the triangles in.part (a).

.(c). In.part .(a) replace the condition."no side greater than 100 in

length" by "with perimeter < and redraw the flow chart.,

(d) Redraw (b) with the replacement conditiOn specified in part (c).

0)

197

1:49

fit

el

4-4

e

44c

The Prime Factor. Algorithm

,In Section 4-2 (Figure 4-14) we considered the problem of finding the

factors of an integer N. Now our problem is to represent N as a product

of prime factors. These problems may sound similar to you. To see holi.they

pre different, compare the following. The list of factors of 360 in the

order output by Figure 4-14 is

1, 360, 2, 180, 3, 120, 4, 90, 5, 72, 6, 60, 8.,

45, 9, 40, 10, 36, 12, 30, 15, 24, 18, 20.

On the other'hand, the complete factorizati ,pn of 360 as a product of, primes

is

2 X2 X2X3 x3 x 5.

When we output the.redults from our algorithm, the multiplication operators

will be omitted.
,

We will work out the4aIgorithit following the same Oeps we would use
, -

doing the computation by hand. In the hand method ge_would check to see

-1ther- KT-rs-4,,divissr (,Sartsby letting be ?)

If K is not a divisorof 11; increment

is a divisor of N, then: .

(1) p;int _out/

11 by N/K (so that,,ve can now look for factors of the

smaller nuiiiijei'tbilled by iirlding N by the factor K);

K

ti

_

Alb

by 1 'and check again. If K

. , (5) without incrementing K
t

check whether K is a'divisor of the new
?0

ossible

Finally, as soon as K 4eeds , N can halfe no factors other than

itself",(and 1) so N Oust,ee, prime, or equal to 1. You should satisfy your-

, self that, in the process we describe, the present value of N can never have

factors leds than the present value of K.

,

8

4=4

SinCe K stars at 2, is incremented by 1, and is not to exceed

Ne evidently have the iteration box,

7

K < 2

KK+1 Ic< a
T

The rest of the algorithm has been discussed in the preceding sentences, so we

exhibit its flow chart in Fig6k-0-32. ,Fle, can see ddthis flow chart that as

dt oes uy towardll; N comes down toward K. The inner loop, Boxes 3, 4,

and 5, involves the check for repeated factors. The necessity for 'Box 6 arises

from the roseibilIrythat atisome point N might,oe a power of K. In this

case successive repetitions of the inner loop would eventually reduce the value

of N to 1. It is left to tfieAudent tOcheck that nothing but primes can

occur in-the'cutput: Ifit'll-re of the primes less than A were available to .

be input intothe computer) the computation would2be considerably shortened.

M

Gt.

C

i99

4

4-4

to-

K 4-- 2

qr. K(--K+1
<

3

T

[N/K] X K

T

4

K

OHO nut- 1.2 nrr

4-4

Exercise 4-4 Set C
.

One of the students who studied the algorithm in Figure 4-32 wondered

aboUt ways to improve its efficiency. In particular, he was unhappy with the'
--

fact'that in repeating the test in.E:OX 2 , N, ,

5.

-:

--,
. K < A.,.

.
. '..

we must repeatedly compute A even though the, value qf. N might remip
' ..1 4' r `e

unchanged 'du a number ef transits through 10°134
e,

tAs an.alternatiye,,
/ .

IS

.

4 ,

the student developed thelalgorithminFigun 4-33, claiming: ,
'...

_----, ,

1 r
'

e .. i .

(a) it is equivalent',`11? Figure 4-_32 as .fard.'s results are concern .
..

' ''. '4,
1

(b) while perhaps slightly more difficult to Ainderstand,.it weCsm6re A .'

e I,' i

'efficient. in that A is computed only onCe.Lis ea.h.' value "gf , .N. ' 4..° ,

1

-: f a .
L

...l

.

Your job in this exer,:ise is to study the proposed'al-qerriative and eithd
,

verify the claims made by the
.
student, (a) and..(b), o' "64'here. he is , 6

wrong. To verify orrefute claim (a) you should tjace thgUgh the flowchart ,d:

finding the factors' of several numbers like 10,/i f, 12, and 241::: -4;

4

yip

2

SQRN (

°

. .

2

K K

K4 -K + 1
K < SRRN

-tN/K]

T

7

AI

r

N/K

44,

a.

Figure'4.43. Proposed complete factorization algorithm
201

9

"kla

. 4-4

Shuttle - Interchange Sorting Algorithm

Look back at the' sorting algarithm of SeIrtion 3-5, Figue 3-31.1

purpose of the algorithm wag to take a given list of numbers and "sort" or

"rearrange" it in increasing order. We went through the list from lef to

right looking for a,-consecutive pair out of order.

Al A,
, A3

A
4

A.5 A6 As. A9

2 7 9' 11 3 8 7' 12
-

0

5N.
*...

A, soon as weTound two adjacent nuMbeis out of order we interc

Al
/1/2 'A3 A4 A5 A6 \k7-, t A8 A

9

2' 7 9' 3. 11 8 7 12 5

ged them.

Then we started over again treating this "interchanged' list as a brand

new problem. The algorithm was'easy to deFscribe but rathe- wasteful. The

reason forthis wastefulness is the rechecking of pairs p eceding the inter-

changed pairs. ,These are already known to be in increas

for an algorithm, to eliminate this waste.
.

g order! We look.

In the.example above we see that the 3 is still out of place% 'Holding

a finger on the positiOn of; 11, so as not to lose o r place, we first take

care of 3. Using three teats and two interchanges e work 3 back to where

it belongs between 2 and 7.

S

Al. A
2

A
3

A14. A6 A
9

2 3 7 9 11 8 7 12 5

Now welcome back to 11 where our finger was and compare it with the

ext ent.ty and so on. Now to translate this into a flow chart, we, input N

and A vector with N components:

A

ft

202

2 g'
'0

-

1

N,CAIi I = 1(1)N)

-

, , .".7 '-.,
Now we introduce, a variable J which runs through,lhe subscripts:picking

out N -'1 pairs A
31

A
3+1

) to be compared.

J 4- 1

4- J +1

J < N'

9

IT

Then we must have a variable which, after an interchange located by J4

works the smaller of the tiro interchanged numbers back to its proper location.

K

.

There are two surprises in this box. rst.there la-a variable on the

right side of the initiation compartment. econdilibcremiirtatitin is negative..

Bothof these novelties are permissible.

Now we draw the flow chart in Figure 4-34. This sorting algorithm is':

quite efficient and has therefore been named. It 1,s variously called 'the

"shuttle - interchange" algorithm, or the "pushddwn-pushup" algorithm.

1 b

203

. .

i

r

' 4 e

s

A
..

.K 4- .7-1

>K 1
0

K 4- K-1

, A

' NI

i

1 r

Figurp 4-34. Shuttle-interchange sort

0.

0

Exercises 4-4 Set D
,

1. 'fn'order to properly compare the primitive sorting algorithm, Figure 3-31,

with thaone,in Figure 4-34, redraw the former usieg'agiteration box for

control of the, inner loop. In re. :wing Figure 3-31yodcan simple omit

Box ll letting Box 8 lead.to a
4110

:1"q.41,

4-4

2.
,

In order to appraise the efficiency of the.shuttle-interchangdpiethod and

to compare it with the primitive sort, we will again equate the-yprk of

sorting to the number' of comparison required,. In this

work would be proportional to the,total number of times

(Figure 4-34) are executed.

How many times are Boxes and

if the values to be sorted are

How Many times are Boxes 4 an4 7 executed if the

are .9, 5, 9, 12 ? ,

(a)

b)

1.

7 executed from

7, 2, -5, 4 ?

(c) How many tdMea are Boxes 4 and 7 executed ie..the

are 12, 9, 5, -9 ?

case,

Boxes

the sorting

4 anc1,7

.

values to be sorted.

C
s

values to be sorted

3. What changes would be required in the flow chart in Figure 4-34 to make

it serve for sorting numbers into descending order?

4. A student brings into class the algorithm:shown in Figue

the following claims;
4

4-35. He makes

(a) It's an algorithm for sorting numbers in ascending algebraic order.

(b) It's more efficient than the algorithm in Figure 4-34.

Your job is to verify or refute each claim.'
/.--.\

START

I < N-1
6

F

J 1

+-,Jt1
Jk-)20,I

(A., K = 1(1)N)

4 .

A > A
J J+

COPY +-A

A A
J .+1

A1J+1 4- 6°13Y-

Figure 4-35. A sleeper?

'
k

:

-

4-4

tThe Monotone Sequence Problem

A fe'w years'ago a charming little problem was making the rounds of mathe-

matics departments. It was a true stickler in contrast with the pseudo stickler

we met eakier in this section. New terms used in the statement of the, problem

are explained below.°'

PROBLEM: Suppose you are Liven a sequence (that is, 'a list) of

N numbers, guaranteed all different. Prove that the

length of Vle longest monotone subsequence is at

least A.

By a sequence we mean a list of numbers like the components of a vector. The

order in which they are written is very important. For example:

5 0 9 6 1 12 3 7 2

By a subsequence we mean the list that'zemains after'"prossing out" some num-

bers in the original list. We show one of the 512 'possible subsequences of

the sevence exhibited above:

.0 9 6 / 12 3 y 2

The reason for explaining'this idea in terms,of "crossingout" is to make it

absolutely clear that the order of the remaining terms is not altered. By a

Monotone subsequence we mean one in which either the values are increasing from!"

left to right or one in which they are decreasing.
o

Thus, the preceding subsequence.is not monotone but the following two are

monotone, the first being increasing and the*con4 decreasing.

0 0 1 0 3 7 4

5 0 0 IV 3 2

You. can check that the increasing subsequence is the longest possible; that is

to say,'there is no increasing subsequence with more than 4 terms. The de-

Creasing ane is the not lOngest 'possible, since the subsequence

6_ -3 2

is longer.

In this example the longest increasing subsequence had length 4 and so

did the longest decreasing subsequence. Thus, in this example the length of

-the longest monotone subsequence is

t Alltv .

See footnote at the beginning of Section 2-8.

206

c.2 8oro

b

The problem concerning'ihe lollgest 'monotone subsequence is actually one

of proving a theorem. It may nat Be possible to get 4 computer to prove this

theorem; but stii/ this.protlem'suggests an interesting task that a computer
,.. . .

can perform. Namely, for a given "sequence, find the lex3gth of its longgst
..increasing subsequence. .

.,
.. .

We look for an algorithm and the first.one we not only find very. quickly,
(

but also quickly reject. It begins: List all possible subsequences. Check
,

each to see whether it is increasing. Make a note of the length of each one
.

which is increasing. Pick out-the greatest Of these recorded iefigths. That

is a valid way of attacking the problem, and the flow chart is not difficult

' to draw. Whit, then, is wrong with this solution? We reject it because olipthe

monstrous amount'of computati.On54e the original sequence had 60 terms, then -

the number of subsequences would be 2
60

or 1,125,899,898,650,624. For all

intents and purposes, such a number of calcu2ations gates well be nfinite.

An algorithm which calls fof this many4balculations may be of theoretical

interest,, but is of no practical use whatsoever.

Finding a usable algorithm for this problem is a more difficult under-

taking than any we have tried so far. We won't, get the idea,all at once.

Let's take another look at the previous example.

I 1. 2 3 4 5 6 7 8 '9

.AI
5 0 9 1 12' 3 7 2

For each value of I from 1 to 9, we want to figure out the length (call

it B
I

) of the longest increasing subsequence having AI es its last term.

This is not difficult for, the short sequence in this example. The answers are

tabulated'here.

__ 3 5_ 6 8, . 9 _

6 6 12 3 2
BI 1 1 2 2 2 3 4 3

4-4

How did we f' d'the values of B
I

? By eye--just by looking. And yet we're

sure we're r ght. Still, there.is a systeistic way (an algorithm) for finding

the values the Br But first, note that the desired length of the longest

increasing ubsequence is now simply the ma\cimum of the values of the B1; in

this case, hen, it is 4.

In or er to expose this systematic method, consider the preceding table

only par% tilled out. We will show how to find the value of BV We will

see that he computer-inspired concept of reassignment is of great help to us

in explai ing this algorithm. We start by 'giving B7 the initial value 1.

We know hat y3
7

'must be at least 1.
ea`

I 1, 2 4 5 6 7 8 9

AI 5 0 9 6 1 12 3 7 2

BI 1 1 2 2 2 3 .

How can we find increasing subsequences ending with A7 (i.e., ending

with, 3)? Njay is/dimply to tack A7 onto the end of a subsequence

terinating with some AK coming earlier in the list: This "tacking on the

gnd'canonly be dons when it won't destroy the increasing property of the sub-

SeqUence; that is, only when 'Alc < A7. This suggests the test i

'208

2 :JO
1 e

'

4-4

Suppose the answer is "T" (as occurs for the first time in our

example when the value of K is 2). Then we know that there, is an in-
,

creasing subsequence whose last two terms are AK and A7. What is the

longest such subsequence? We obtain it by finding the longest increasing

subsequence termi,nating with AK and then,tacking A7 on the end. The

length of this "extended" subsequence will then be BK + 1. To be sure we

have the longest extended subsequence ending with A7 we must compare each

candidate value of BK + 1 with the current value of B7

If true we assign the value of BK + 1 to B7.

-*ft

B
7

4
lc

+1

1

If either of the inequalities in the decision boxes 4 or 5 is false, then

,no reessignment.takes place. In any event we now increment K by 1 and

repeat_ the test in Box 4. We perform:this-process for s111 values of

from 1 to 6. x,

I

-K---4- 1

K < 7

K 4-- K+1

205'

2

4

<le

.

4-4

4,

All'this together constitutes the Heart of our algorithm.

t

Figure 4:36. Heart of the Algorithm

1

It is 'clear now that each of the B is calculated in this same. way,

not just B7. In order to get this same calculation made for each Bj. we

replace each occurrence of:.7 in Figure 1 -36 by J and hang the Heart from

the following iterationbox,

J- 4-ai

J 4-,1 +.1
J < N F_

with the connections as indicated. (We are assuming here that (AI, I = 1(1)N)

has beehpinput.)

4

aio

2 2

PiglIre -37 we see Wieie Tire stand so far.*

F/gure 4-37. amwing down the home stretch

P

*V

. =

We have dor...1 just about everything now except for getting the answer.

The answer, you recall, is the largest of the values of-the components of B.

We have done such a computation before and it will be "child's play" to re-'

construct it. The variable MAANC is taken i'roMMAXimUm of the lengths of

INCreasine\subsequences.

ti

c

t.

MA10ENC B

L 4 2

L L + 1
L < N

°

a

9

MAXINC < BL

10

T

MAX.INC B1,

11

MAXINC

STOP

_

Figure-4-38. The final calculation

st,

Now, if we join the two flow charts (Figure 4 -37 and Figure, 4-38),ttogether

at thebullseye, the,algorithia is c6mplete.

f/P
1 4,

, Its,usual, we ask the question, can we make any improvements? And, as

usual, the answer is yes. It would produce a simpler looking flow chart
..-

as well as a slightly shorter computation to keep a "running" record of the
. .

%-
4- . ,

:
to

-

,
.

_ . .

.,e.

4-4-

Value of MAXINC instead of introducing it after all the values of the Bj's
are computed. We mean that aftera.given Bj' is finally computed we should

Compare it with MAXINC. Then reassign Bj to MAXINC if Bj is larger. This

eliminates one iteration box frapp our flow chart. The couparison and possible

reasdignment are seen.in Boxes 13 and 14 of FigurN39. It,is now necessary

to assign an initial value to MAXINC prior to Box 1.

4

4

0

N4AI, I = /(1)N)

12 4,1
MAXINC 4-- 1

I

J 1

J 4"' J +1

2

B 1

K 1
K < J

K K+1

T
4

F < A j)

1f
< BK :4- 1

6

Bj BK+1

13

(MAXINC < B ;)

14 IT

MAXINC B

MAXINC

. Figure 4-39. Length of the longest increasing subsequence

213

2 0,

7'

4 -4

;VP
As s final surprise we findlithat some of the machinery developed in our

algorithm`will inspire a proof othe theorem proposed in the original problem.

This is shown in Exercises below. As.

-*Exercises 4-4 Set E

1. What changes are needed in Figure 4-.39 to convert the algorithm to,one
.4

which finds the length of the longest decreasing subsequence? Let CI

represent the length of the longest such sequerice terminating with A/.

2. Show that it' J < K, then the piirs of output values

0 (Bj, CJ) and) (BK, CK)
4

cannot, be the same. (I.e., not both pBj = BK and CJ = CK.)

3. Use the result of PrOblem.2 to show thAt the lengtk of the longest mono-

tone subsequence is at least 1.17i.

4. Now that we have succeeded in producing an algorithm (we'll call it MAX?

for short) which finds the length of the longest increasing subsequence,

how do we find the sequence itself? One ought to be able to search

through the B-vector for clues which will point to the A1s 'belonging

to this sequence. If you kre on your toes, you will be able to draw a

flow chart for the processlof searching out,and printing elements of this

subsequence. The Flow chart can then.be tacked onto Box 11 of Figure 4-39.

To get you started we'll give yo4ewo hints:

(l) Although MARY developed the value of MAXIM, it did not tell you

(
where the top or "'head' of the longest (or one of the longest)

subsequence may be found. Your flow chart must search for it.

(2) We'll show you a picture which should Suggest a plan for system-

matically retrieving elements of the subsequence once you have.
.

found,its head. Here it is.

K

AK
BK

1
. III III III
© 9 6 Q 12 ' ® 0

1 En 2 2, 2 3 RI LI

t.the head

The desired!subsequence in this case is 0, 1, 3, 7.

214

2i6

0

>r4

-1 Reference Plow Charts

Chapter 5

A

FUNCTIONS AND PROCEDURES

In the last few chapters you have fre4dently seen an assignment box like /
44gure 5-1.

x

f

Figure 5-1. A familiar assignment box

an**-
Now we want to ask.,`what really is me y this boX. We know that it directs

us

1. Send an assistant to find the window box with "y".tengrayed on

its cover and'to bring the number found there to the master computer;

2. Do' something with the number delivered by the assistant to produce

the square root of that number;'

.N

3. Give the result to an assistant to put into,the window box having

"x" 'engraved on its cover.

How does one find he square root, of a (positilV4 nuMhyr? We know that
*MO.

it is not a trivial thing to do. Let's explore an algorithm for fidding

square roots.
e-

'Suppose we take a guess at a value7iof the square root of y. Call this

guess g (for guess). If g is the square root of y, it is obviTiiis that

is equal to g, but we can't expect to be lucky enough to make the right

pees the firit time. Since the product of g- amd 1 is y, seethat,

gOne of these numbers is leis than 6 and the, other gre r.

,

Now suppose we make a secondgueds, h, at avalue, of the square root

of y. As indicated in Figure 5711, if the second guess, sh, lies between g

y/g y/h .h

'Figure 5=2. Second-guessing the square root

215-

2 7

a

Y
._.-' g

and ,
- h
so also does . So, if we take any point h in the interval with

Y

endpoints g and g, we can, define a new int rval with endpoints h and

X contained in the first interval and still c ntaining /T. If we makeh
repeated guesses by taking a new point inside each new interval, the intervals

must get smaller and smaller Without end and the guesse's must come close and
.,

closer to 6.

Vhat point in this interval with endpoints- g and X would You like to
E

take for a second guess; _Any one will do but some might do-better than

others. An easy point to-find (andan excellent ond) is the halfway.iloint,

1 y

g
rr =

g
(g +) .

4....

If we continue to thake our successive choices in this way, how fast will

Lthe successive intervals get small?
. .. ,

''''

,...bet dl be the length of°the first interval,
sp..*

2 4.,

di". 1g Yigi- ,Ig '7'

V
add let d

2
be the length o'f the:second interval,

/

dlh g
2

+ y 2yg

2g g
2
+ y

Now you Can easily check that

d
2

(62 y')2
1
2

g2 - y

2g(g2 + y)
2
E

Since y a positive number,

so that

g2

g2

x di

ITherefore, each new interval must"te 1 ss than half as long as the last one.

In fact, after only a few of these su5d0essive choices the new intervals wi4

4itbe mgch less than half as long as t eir edecessors,'tC

Thus) the process of repeatedly averaging g and X and assigning theg

result to g is guaranteed to weld successively better approximations 1r the

216

2

4

,.

square root ofiAy --even-if the first'guess is really terrible.
,

-We draw a flow chart 'of thts,pro4ss, Figure 5-3

START

1

3

h ''(g

4

- gl < .0001

F

5 t

g h

.1,

Figure 5-3. Square root method (due to Newton)

nt, /
e

Box 4 shows'acondition we could use to end this iterat,ime0Less when the

improvement in the approximation beComes less in magnitude than some number

' like .0001.

In case we ever want to _take a square root again, wouldn't it be a good

idea to fileoa permanent copy of Figure 5-3 in a notebook so everyone could

use it? Besides, suppose we ever need to take square ro9tsat more than one

place ip a flow chart, wouldn't it be handy to have a reference flow chart that

could be referred to from any place in another flow chart?

To help us make a permanent reference copy of the square root flow chart,

we will adopt a few nes.). conventions. We need anopier.zay to indiCette tie

argument of the square root, otherithan by rel.,Rini a card as in Figure 5-3

.

Figure A funnel

217

knew flCw.chart shape is used to show both the purpose (taking a aguarOxoot)

'ei'thio.s -reference flow chart and the afument, y. This,r4w shape is the

funnel shown in Figure 5-4. We alsip need a way, in the fl9 chart language,

tostatt,the result and to say that, we nod eturn to that bo in the flow chart

that caused the reference. This shape, replacing the print and dt. boxes of

Figure 5-3, is "return" box (Figure 5-5).

Ar

1

t

Figure 5-5. ReAlrn box

Main flow N11rt Reference /flow chart
---.

Fig. 5-6. Use of a reference flow chart.

C
21

Figure 5-6 shOws the use of the funneland the returnApox on the ends4Of

ow chart is required

"(by 167 in what we will call the "main" flow chart), we go to the funnel end

,via route 1. The inscription in the funnel says that, to usathe reference

flow chart, we must, first assign the value of x to y so that whenever 4

appears in the reference flow chart its initial value will be the value of x.

When execution of the reference flow chart is finished we are toc6-/turn vier

route 1 to the same box in the main flow chart that caused the eference and

complete the execution of this box. When we again require the reference flow

a reference flow chart. The first time the reference

ahar"" t-ctor.--Z,i-n-bar-i) we are to go to 'the funnel via route 2, assign the

value of n to y, execute the reference flow chart, and return to the main

flow chart via route 2. A flow chart for 6 can be referred to as often as

necessary by a main flow chart.

Figure 5 -7 shows a.referenCe flow chart for taking square'roots.

.4; 1:

.A.

Figure 5-7. Reference flow chart for square roots

219

Ys r

Execises 5-1

i
1. or a cube root the iteration formula could bp

1,_ .

h yyeg + n).
gc

\

Prepare a reference flow chart for theCalculation of a cube root.

2. Prepare a reference flow chart for the evaluation of f(x) = 3x2 2x * 1.

3. Prepare a reference flow chart for ABSOL(X) which evaluates the

absolute value of x.

r.

, tSince g2X-Y-n- = y, it is clear that g and lie on opposite sides of
gc

qy
1, v

It is therefore to chose the average, pg + 4:70 for the next

ess. In Tater math courses it i shown that the-weighted' average, (28 + 1:7)
3 c

. g

is the better choice.

220

2 2. 2

'1,^:t . .

5-2

t5-2 Withematical:Functions

Many,of you have been introduced to the mathematical concept of functibns

in earlier courses. Even if:you have not, you hale all dealt with particular

/Urations such as the trigonometric, inverse trigonometric, the logarithm and

exponential functions, and tle squarelroot functiqn. In computing, the word.
;

"fUnction"'is used in a subtly different way than elsewhere. To enable you too

appreciate the *differenCe,we will discu5s here the.m athematical concept of

function in detail. We have touched on the function concept very casually in

earlier chapters of this book.

,

The first basic idea involved in the function concept is "unambiguous

designation." Suppose we make a remark about Elinorts hat. It turns out that

Elinor has a whole c l'of hats and it is not at all clear which one

we arej referring to. But ow a remark is made about Elinorts head. Ala That

is a, iffexent matter.. Elinor hae but one head, so. that the head being referred

to is perfectly clear, that is to say, unambiguously designated (or determined).

We think of a function as being a thing which performs such unambiguous

designations. But a function makes not just one unambiguous designation, but

a whole lot Of unambiguous designatiotto For example, if we were to say "the

hat on the head of XT, we would have an unambiguous designation when a

particular person's name is inserted for X; and a large set of bats could be

designated depending on the set of names we allow to bemused for X.

This is the second basic idea inthe function concept. There is a set
.

called the domain of the function and for each member of this set the function

unambiguously designates something.

As an example consider a function which we will call BRTHDY. The domain

of this function is the set of all human beings. Whenever this. function is

presented with a member of its domain, it designates the birthday of that
,

person. If, the function is presented with Abraham Lincoln it designates

February 12:. We write

BRTHDY(Abraham Lincoln) = Feb. 12

to indicate that Febl 12 is the thing designated by.tfie function BRTHDY on

being presented with Abraham Lincoln. Similarly,

BRTHDY(George Washington) = Feb. 22 .

tThis section can be omitted if you are,already familiar with the mathematical
concept of a function.

221 09
4

414

5-2

What is the value of

,

-
.

BRTHDX(Tom Spumoni) 2

el
We don't know. 'But,,we,, do know thEit om Spumoni has a birthday (provided he is

-, ,

a real person) and it isLthta,birthdak which
i
is designated by the expression ,

; .

BRTHDY(Tom Spumoni).

(In mathematics, as distinguished fr4.computing, we are satisfied here with

the existence of Tom Spumoni's birthday and we do not feel the need of being

able to exhibit'it explicitly.)

Another example of a 'function is the squaring function, SU,. This function,'

given any real number, designates the square of that number. Thus,

SQR(2) = 4, SQR(-3) = 9,

w(1.7) = 2.89, sQR(0) =

Su(3) = 9

So now we see what a function does. If, to each member X of a given

set, a function called F is applied, then an .object,. F(X), is unambiguously

deSIgnated. That tells-yo what functlat'does, but'you may well want to know

what a function is. This, it turns out, is not terribly important to us.

The situation here is somewhat similar to that of numbers. We know how
- .

numbers behave under various operations; we know numerous properties of the

set of numbers such as order and density; we know propeies of various subsets

such as the integers and the rationa1. Inshort, we know almost everything about

numbers -- except what they are. And we have been able to operate with numbers

quite adequately for lo these many years without this knowledge.

And so it is with functions., As lbng as we know:that a function, F, will,

for each member, S, of/its domain, produce for US the "functiOtal value ",

F(X), we have no need in mathematics of knowing how this is done. There is an

analogy with dialing a telephone number. We know that for each telephone

number in the 'domain" (i.e., the set of phone numbers currently in service)

a certain telephone is unambiguously determined. When we dial the number,

this telephone rings. We are not concerned with the wiring, the relays, the

switches, the computers,, and the coaxial cables which may be invOlved in the

process of making the phone ring at the other end of the line. It is only

impOrtant to us that this phone does ring.

222

224

. 5-2

Now that we'have been assured that it is not important for us to know.:
. r.

_ 4',

what functions are, we will discubslree ways of "representing" them or
,,\

thinking about them. This is_similar4E spirit to our way of representing the
r%

.

real numbers as points on the numberlkne. This means, more or less, that we
. , 4,

think of the real numbers as being, points on a line.
--

The representation of a function as'a machine is useful as well as popular.

Consider, for example, the squaring machines a representation of the function

SQR.

We see that the machine is equipped with an input funnel and an output spigot.

We-have indicated the domain of the fanction (the permissible input) on the

inpgt funnel. If we input 2, the machine grinds and cranks and outputs the

number 4.

If we input -3 the machine whirrs and clanks and outputs 9. In general,

for anVvalue of X that we input, th machine outputs X,The important

thing, the thing that makes SQR a function, is that for each input value,

there is just one output value.

ag
4

r1

-2

Here is another machine, called UNIFAC for UNIque FACtorization.

\aose77A-e-
/..vreoe.es/

UN/i4-4C

'

The domain of this function, as we see, is to be

If we input an integer, the output is the unique

into its prime factors.

fis

the set of positive integers.

decomposttimi of that integer

So we input 5 and since 5 is priA, 5 is output.

' That is, UNIFAC(5) Suppose we

30

= 5. input the integer 30.

so what is the value of UNIFAC(30)

we just take Our choice? An ambiguous

ization is 2 x 3 x

3 ? or 5? or do

mean that UNIFAC would nQt be a function: We build the machine so as to out-
.

put, not a cascade of factors, but a single vector, having as components the

factors arranged in non-decreasing order. ----

30

5,

e

Its prime factor-
..

? Is it 2 ? or

answer here would

(4 3, 54

\ fie)",
VNTE48.4?

1/4/44.7f7

(g, 3,4 4.1-/).

ti

((,2. 2 3,2,5)

4, 5 - 2

An example of a function Which accepts vectors as input is the functfon.

MAG which accep three-element vectors as input and, guts their magnitudes

Alk
(i.e., the squas root of he sum of the squares of t e components).

n I' -3, 1-, /Z."

Now with SQL?, UNIFAC, and MAG we have illustrated functionewhich,

` fdr an element of the domain (whether its value is a single number or a vector), 4
unambiguously designate an element of the range (either a single number or a
vector). In each case we haven't cared about how this designation happened.
However, the fellow who has to design the, telephone system, or the =PAC
machine, or a reference flow chart, must be able to spell out, as a rule or--;-'
recipe, a way to find a value of F(X) once a value of X is given (Figure
5-8). This isoanother way of thinking of a function.

igure 58. Spelling outa'recipe

A&F

three exaMples.,

domain is the set of all things for which the rule makeense. Here are

thd function. If no such indication is. made, then it will be assumed that the

makes

'225

of

** *

A

When specifying a unction we must be careful to indicate the domain of

ll
_22

IP

5-2

Example 1: F(x) = 3x2 +5x - 2 for -3 <,x <'5,

2
4

' Example 2:. G(x) = x
x2+ 1

Example 3: H(x) 1 1 172'

. ...s4
In the first of these examples we see that the domain is specified to be

%
thehalf-openinterval [-3, 5]. In Example 2 the domain is not speAified and

so it is assumed to be the set of all real numbers, since (x2 - 3)/(x?:+ I) is

meaningful for all real values of x. In the third example the'damain is again

unspecified but this time the domain is (-1, 1] since Ig.-7.25is not mean-.
J

ingfal for values of x taken. from outside this interval.,.

One point which should be clarified at once is: SuCh a rule does not

depend on the variables used in expressing it. For example, if we write

J(t) =
t
2

- 1

t + 1

=

then the function J is identical with the function G of Example 2.

We see that this "rule" viewpoint strongly suggests that of the progTammer

who is to draw a reference flow chart. The reference flow chart, in Sectin 5-1,

for finding square roots is an algorithm and an algorithm is, after all', b. :c

kind of rule or recipe. Op the other hand the "machine" viewpoint suggests *

more nearly the view that might be adopted by the programmer drawing a main

flow chart who wants to use the reference flow Chart. All he cares about is

that if he provides a value of x to the reference flow chart for the square

root, it will return a value he can use as the square root. of x.

Whether the "machine" viewpoint or the "rule" viewpoint is adopted in

thinking of functions we can tabulate results as in.Figure,54.

,SQR N..

Grandma Peabody's Function Recipes

s_q_e

0. ur(Awygaz-i4eaeo,r;t:
® US /NC rAvs V.411/1 CoMoardr 't

(0) r,ve gert/Z7 Ar Acre 114'406,
.z: of SQZ f.r)

X (input) -10 -3 -1.7 -1 0 1 1:4 2; 1:7' 5

F(X) (output) 100 9 2.89 1 1.96 y 2.89 '25

Figure 5-9. Tabulation of SQR

226

,2z8
,r

tr)

5-24
The table given in Figure 5-9 is very closely akin to the set of ordered

pairs: (-10,100), (=3,9), (-1.7,2.89), (-1,1), (6,0), (1,1), (1.4,1.96), (2,4),

(1.7,2.89), (5,25). (We call them'"ordered" pairs to make it'clear, for

example, that (3,4) is not to be considered tht same as (4,3). I.e., the

order is taWn into account.) The first try in an ordered pair is called

the"abscissa" and the second is called the ordinate.

abscissa (input) ordinate (output)

Although we cannot write out an infinite table, we can conceive of an

infinite set of ordered pairs. There is a mathematical notation to describe

it. The mathematical notation describing the set of ordered pairs which

accompanies the SQR function is

((x,y)15, = x2).

When you read thi's out loud you say, "The set of all ordered pairs of the form

(x,y) which satisfy the aodleion that y is equal to x squatred."

The rule viewpoint and the set of ordered pairs viewpoint are really

equivalent. For, firstly, the rule determines the set of ordered pairs. And

,secondly, the Set of ordered pairs itself can be thought of as a rule equiva-

lentto the given one. We explain what this means immediately.

Suppose someone asks what the value of SQB(2) As. We could tell him

to, "go to that set of ordered pairs over. there and hunt for\the pair whose

abscissa is 2. The ordinate of that pair is SQB(2)." ThEloois a rule for

finding SQR(X). And this rule ft equivalent to the original rule. because the

two .rules always give the same results.

Many people like to think of the function as actually being the set of

ordered pairs. They then accept the following definition: "A function is a

set of ordered pairs witikthe property that no two pairs in the set have the

same 'abscissa." (The qualification about, the abscissa expresses the uniinbig-

uous designation property.)

This "set of ordered pairs" viewpoint is evidently closely akin to that

adopted in Chapter 4 in the discussion of table - look -up, especially in the case

that the table is punched on a stack of cards. In that case, each card may be

thought of as an.ordered pair.

227 -42

5-2 ti

LW`

Whatever viewpoint we adopt, there 4s one essential point we must be

agreed on. That is, if we have two functions, F and G, having the same

domain, A, and such that

F(X) = G(X) -for all X in A,

. then' F and G are in fact the same function.

We must be especially careful to be clear on this point if we adopt the

"rule" liewpoillt. For two statements of rules can, look quite different but
A_ _

in fadt be dq6Ua3ient,_ Then if we give the rule for finding Q(X) as: Take
.71.-4k7

- the numbers",one more and one less- than X and add 1, to their product, /-
.... .

'..Q(X) =ficX,+ 1) XistX . 1) + I: '
...._ ., .,;,.. 4 .

,,, si "Sk ' .,°"4.

'''' ,illQii find the .-'1.i 4the ":47.4 '151.11446 .ak SU.
*.

, %-: ''

.. - . ._

+.- ..44-,,.

?.. ., . '-' *- Mathemdtit;.1 i,y, e.., le,n6a0. 4641gret ion is function so Ihatevery.
7. -. ,e. ..

46omputor program cAn be %Sr -IA' at Afraction. The co on compUting usage of.
..t A... "...% .4" 4.

...,e-A/OT 1.111C:61.0n ..feferk;t6:the tzs'd ofl'a sepaf4e la "2!(Agrbili for the Compu-

tat ,df values. Simple,Sunctions f' or which the eri trapet i c operations of
, <. .1 ,,,,,

_,

..Addition, sulAractiOil, MultipirCaZipi and division are sufficient are risuall;*"
.

comptited,,,in the Main program (unless.-they ocC-CLso often that 'a subprogram. -, .

tomtm.mote edftomical Qf memory space). Such simple function§ (e.g.:'.,- x2 1+ 1)
. A y

- .

are, of couX4e recognized ap biliflg nctidns but-are seldom called by that

5

,
risme. .

w's - ,,%

, .
'..t.'..,. 4:4't

Finally, in computing we will not be interested in functions for which

'C'tional values cannot in principle be computed even whdn the existence of..." N

etional-values can be'proved., .Tge class of we Te will be interested
. I . e

'4 .
in art,,41ed "computable functions". V. ...

4 ,..

.

Since computer calculations on the reels are almOst always approgtmate, -

-,

...Not ,... .

, s' .e , " .. YA.1.1 should recognize that, in effect, we -replaCe mathematical' 'functions by

comppter which are often slightly different.

A 1

. ?

:4 0.1 ,10's
e-

.

228

31)

I

4

-

5.23
a

'

Getting In and Out of a FUnctionalReference

We are now ready to tie tip the ideas dellieloped inhe first two sections

of this chapter. In Figure 5-7 we saw an elegant algorithm for computing

approximate 'values,of thesquare root function. We'hive explained,that this
%

algorithm may be "referred to" by another algorithm and we want to see just

how. To streamline our terminology weshall frequently substitute the word

"subroutine" for "reference flow chart ".

First of all we will bring to light a source of confusion so as to

properly exterminate it. In Figure 5-10 we see two flow charts. On the left

is the main flow chart and on the right is a subroutine. The program on the

left is immediately recognizable as the computation of roots of the quadratic
2equation, Ax X +-B x X + C = 0 by the quadratic formula (where we never

inpUt AD for A). The subroutine on the right is the'-eame as that in Figure

5-7 except that the variables have been changed so as to create the necessary

confusion.

.". 2

1

('A,B,C

Xi*-- (- B +SQRT(B x B xAx C))/(2x A)

4--

-

"THE ROOTS ARE",

'XI, X2

(a) Main flow chart 1141.' ('b) Functional refereiQoe'

flow chart.

Figure 5-10. A source of contrUctive cAlftsion

T.. 229

e

5-3

We first analyze the connection between the two flow charts of Figure 5-10

in a very naive manner. Suppose for this discussion that the input values of

A,. B, C are 1, -4, 3. According to the principles of Section 2-5 the first

part of the expression on the top line of box 2 is B x B - 4x4xC.. This

evaluates 1110.4. Now the evaluation process calls for SQRT(4) to be evaluated.

As we would expect, this means that we drop 4 into the funnel of the reference

flow chart. This is equivalent to assigning 4 to the variable A appearing,

in the funnel. The wheels are thus set in motion in the subroutine. Dazing

execution of the subroutine, values are assigned to B and C each time

through the Loop. The result seems to be that although on the one hand the

desired square root is correctly evaluated, the values of the variables A, B,

and C are altered in the process. This was clearly not anticipated by the

person who drew the flow chart for the main program. He innocently called for

the evaluation of A certain square root with no ideathat the values of his

precious variables would be altered in the process.t

The first method which comes to mind foi- handling this dilemma is to use

entirely different variables il4Figute 5-10b than those used in Figure 5-10a.'

This id equivalent to using the flow chart of Figure 5-q in place of Figure

5 -10b._ It is'true that if we adopt this policy we will be in no danger of con-

fusion in reading the flow charts,and if we trace them out by hand we 1.1 com7

pute,good approximations of the ro s. (In fact, in the example of 4 previous

footno would, by a fortuitous fluke of the rounding method chosen, obtain

the exact values of the roo

If we accept the solution offered in the last paragraph,.then 4.4e will lose

a golden opportunity to comprehend what really goes on in computer subroutines.

You Must be wondering by now what the right answer is to the dilemma that con-
.

fronts us. Since we, have earlier taken the viewpoint that the variables are
40

the symbols themselves., we do not want to claim that the symbols .A, B and C

of Figure 5-10(b) are different frOM the symbols A, B and C, of Figure 5-10(a)

Yet this does Suggest the right idea. In order to get hOlorOfthie-idearwe

fall back once more on our ever-dependable window boxes.-
ta.

gs

You might be interested in following this '"naive 4proach" by hand through the
flow charts of Figure,5-10. Using input values of .14,-4, 3 and using 4

tabular digit round off with TRUNK (See Sion 2-5), the values of A, B,

11 be 4, 2.05, 2 when box 8 is reached. Box 8 tells us that the present

ue of C is the desired value of the SQRT(4). Continuing the computatfon
th whit appear to be the present values of A, B and C, we obtain -.00625

-.5062 as output values of X1 avid X2.
w
an

We will'have to Make our windol box model of computing a little more
elaborate in order to handle subroutines. We are going to think of-oU'r-sub-

routine as being carried out inside a sealed brick chamber (see Figure 5-11).
The only contacts this chamber has with the outside world are a funnel on the
top_and a window in theide. The number to be square-rooted

4

Figure 5.-is. Square root subroutine (exterior view)

.f
is put into the funnel' whereupon the subroutine is executed and the desired
square root appears in the window.

Inside the sealed chamber there is a separate staff (master computer,

assigner and reader) ana Window boxes for evh of the variables appearing in,
the.subroutine.. These boxes are completely inaccessible from the main flow
,chart with two exceptions--We can assign to the variable appearing inthe
funnel when a square root is called for in the main flow chart.. And we can
read from thi-variable appearing in the.ITIURN circle.

If some or all of the variables appearing:in the subroutine:also appear in
the main flow chart, Figure 5.-10, then there wili=be additional wiitional window
boxes for these variableb.outside

the sealedchamber.,..4If references in the

231

233

3

main flow chart are to boxes on the outside. All references in the subrOutine

are to boxes' on the ingide. .)

, In Figure 5-12 we show an interior view of the square root flow chart,of

Figure 5-10b but with the personnel not included.

Figure 5,12. Square root subrOutinet(interiorview)

4-3

There is a slight modiflOation in one of the yindow boxes. The' window box

labeled''C has windows on,both sides. One of them is'right_up against the

outside window. In this way this box can be read:,.both inside and outside the

room. When we assign a value to the Variable A through the funnel, this

starts the subroOinein,motion'and there will be no'further contact with the

aside world until the subroutine is completed. 1--,*

,232

2

5-3

Next we show in Figure 5-13 all the window boxes used in the main flow

; chart and the subroutine Of Figure45-10.

a) Main b) Subroutine

Figure 5-13. Window boxes for Figure 5-10

Now you should see that nothing here in the subroutine will change the

values in the window boxes of the main flow chart.

With the subroutine enclosed in these brick walls it is almost.as though,

^ the two flow charts were in different worlds. From the subroutine we cannot

assign to variables of the main flow chart or even see what these variables are.

And from the main flow chart we similarly have no contact with the variables of

the subroutine except for two points of contact. Namely, that we can assign to

the variable in the funnel and read the value ofthe one in the return box,

but even in these cases we pay no attention to What symbols are used, bdtirOnly
*4

the location in which they occur. From the point or vie,:or the-main fl

chirt, the variables in the funnel and the return box merely play the role. of

"place holders." 1.1

Concerning the variableg in the subroutine it is sometimes useful to$think

of them as being of two kinds. Those which do not appear in the funnel and

hence cannot be assigned to directly from the outside are called "local" '

variables. Those which do appear in the funnel provide the only link with

the outsider world.world. They are, called non-local variables. _;

We are now, prepared to finish the description of the interplay between,

the mainrflow chart and the subroutine. Again we illustrate with the pair of

flow charts of Figure 5-10. When in box 2 of-this figute the value of SQB
0 ,(B X B - 4xti;x C) is called for, the master computer. sends out the assigner

,233

g..(%"

5-3

and the reader as a air. They hunt for the chamber with SQRT on the funnel.

(They pay no attenti n to the variable that follows SQRT, because the less ,

they know about the ariables inside the chamber the better.) When they find

this chamber, the a igner goes to the funnel and the Mader goes to the window.

The assignerdropstevalue pf BXB- 4xAxC into the'funnel (thus assign-

ing this value to th- variable A of the

subroutine)., When t e wheels stop turning

inside the chamber, he reader reads
AP

the value through the window and returns,

it to the master c uter to use in theS/II

computation. (To thope who have read

Appendix A we explain\that in SAMOS this

value goes into the Acbumulator.)t
-

It is important to note that the value of this square root does not, get

assigned to any of the window boxes of the main flow ehart (at least not

directly). The master computer in performing his arithmetic computations can

only receive one numerical value at a time. For this reason there will always,

be only one window on the, functional reference sealed chamber. Hence, the

functions with which we are dealing will always have for their functional

values a single numerical value (never a vector). In present day mathematical

terminolpgy such functions are called "funct±onals." Vector - valued functions

are also very important in computing work but they will always be evaluated.by

the,dse of techniques for "procedures," to be taken up in the next -section..

Functions of more than one variable (i.e functions whose domains are

sets of vectors) are treated in almost the same way. Recall the function disc

missed in Chapter 3 eor finding the minimum orthe values of B and C. The

rule expressing this function is

M =

B, if B <
IN(B, C)

C, if B > C.

The reference flow chart for this function as given in Figure 5-14 clearly

.follows this rule.,

i'SOMe computer ave registers called "accumulators". Nevertheless,
all computer systems des eke some c nent to hold the result of a sub-
routine. 1

,5

234c_

`,.; is

When a

Figure 5-14. Reference Flow Chart for MIN(B,C)

.5-3

main flow chart needs to refer to Figure 5-14, it simply uses the

neme aN together with the arguments whose values are_ to be "put in the

fUntel."

z

X (--6 + MIN (R,S)

Figure 5-15: Reference to the MIN flow chart

Figure 5-15 tells us that we should

the values of R and S,, respectively,

appearing in the funnel and then execute

are to read the value of the variable in

to the main flow chart. Here we add '6

to Y.

Again we think of the subroutine as

chamber.

find a subroutine called MIN, assign

to the reference flow chartvarlables
?

the reference flow chart. Then we

the return box and return with it

to this value 'end assign the result

A

being carried ott in a sealed brick

.6

fit

235

237

5-3

Figure 5-15. Sealed chamber for MIN(B,a), exterior and
interior views.

,

4-

A i
r

Here if the main flow chart calls, for the value of MIN(R,S), then the

values of R and S are dropped in the funnel in that order and are assigned

in that order to the subroutine window boxe'Of B and C. Again we are not

to be confusedly the possible occurrence of the same variables in the main.
(

flow chart and in the subroutine.

When.we have a function of more than one variable, the name of the function

is accompanied by a list,of variables. This list (which reduces throne entry

for a function of a singe numerical variable) is called the "parameter list."

Parameter lists appear both in the funnel of the reference flow chart and when-_

ever the function is referred to -in the main slow chait. AlthOugh the same

variable need not appear in corresponding positions of the parameter lists

for a given function, these lists must nevertheless match- up like the fingers

of a hand and the fingers of a gloVe;--Besidet- being equal in number, the

variables in the lists must match as to type (numeric, alphanumeric, etc.).

A failure to match as to'type is like trying to putts left-hand gloVle on a

right hand--it doesnit,work..

4

2 8 236'

O

4,

elm

t.

Composition of functional references
>

Suppose we have two functions Fl(x) and F2(x) each with its own
definition in the foreof a functional refprence flow chart.

4Now we examine the assignment box below.

. 4Y Fl(F2(T))

5-3

0

We see that in assigning a value to Y there are two intermediate steps
and.a final step: These are 4

1. Employ the functional reference flow chart for F2(x), supplying

the value of T to be matched with x (i.e., dropping the value
of T.....into .the funnel). Take the'.value returned by F2(x),

i.e., as read through the RETURN window of JF2(x),.(4nd use it

in the next step.

2. Employ the functional reference flow chart for Fl(x), supplying.

'the value obtained in'Step 1 to be matched with x, drop

the value obtained from Step Pinto the (new) funnel.

3. Take the value returned by fl(x), ie.:, as read through the

RETURN window of Fl(x), and assign it to Y.

Take note that all along there has been the implicit assumption that the
arange oft F2 is a subset of the domain'of F1.1

With this concept of a function of a function, each function b4ingirthought

of as a separate reference floW
chart4rwe should have no trouble in interpreting

the 'following flow chart boxes:

. Y MINA + B1, 5.4)

y 4411.110EN(F, ITI),Q)

Y-1,111114UQROOT(B2 - 4A6),

----1 Y *--SQ,ROOT(MIN(X, Y))

1Ydwill recall that the range of a function is the set Otcd1 the numbers that
the function is capable of producing asfunctional values.

3

,r/

5-3

Exercises 5:3 .Set AJ
1. (a) Draw's flow chart for function f(x,y) where f(x,y)- (x3;+ y)2 + 5.

Ix' + 2

,

(b) Draw the assignment box that computes Z = f(r,$) + 6t where

r, s, and t have been previously assigned values..

2. Prep e a flow chart to evaluate the function

right (a,b,c) =

C

1, if a, b, c are lengths of sides

for a right triangle.

0, if they are not lengths for a
right triangle.

3. (a) Prepare a reference flow chart which assigns to max(x,y,z), the

largest (algebraically) of the three values Of x, y and z.

'(b) Prepare a flow chart to read in values of A, B and C, calculate

mix(A,B,C, assign this value to LARGST, and then print LARGST.

4. Given values of x and y, the,functiOn _QDAD(x,y) Is to returnan,

integer value 1/2, 3 or 4 according to the quadrant in which the

point (x,y) lies. Prepare a reference flow chart for qUAD(x,y).

Prepare a flow chart for function INTSCT which takes values of. Xl, Yl,

111, X2, Y2, R2 and returns the number of points of intersection- that the

circle with center (X1,Y1) of radius R1 his with the circle with'.
o

center (X2,Y2) of radius R2. Allow for the possibility that R1 or

412, is accidentally given With a negative value.

For the n
th root, an iteration formula corresponding to the cube root

formula given in Exercises 5-1 is

h (4(n-1) g +)n1

For larger values of n, the root may be approached very slowly. For this

reason you should not let your computatidn go beyond ten iterations. Pre-
.

pare the referenCe flow chart.

238

240
1;

Jack Armstrong plans to b

plans .

5-3/

rrow $100 and wants to compare various loan

(a) Company X will lend h the money at compound interest at J%

monthly. That is, eac -month--1%--of what Jack owes is added to

the debt he must somed repay. Draw a reference flow chart

IRATE (n, R, L) which amputes the amount that mustitrepaid

after n months for a .an of L dollars at R percent monthly

interest.

*<!

(b) Jack finds, that Company will lend him money at, simple interest ,

at perper month. At s iple interest Jack pays the interest

monthly instead of it bei t added to the balance owed. -Draw a

flow chart to compare the ount Zack pays to Company X and Company Y

after 12 months, 24 mon hs, 36 months' and finds the first

'month (if any) when Jack's otal debt to Company X would be }sore

thed his total payment and debt to CoMpany Y.

(c) Jack finally wonders how long it will take each company to double

. -its money. Find that period for both companies.

Exercises 5-3 Set B

1. Redraw the flow chart for the Euclidean AlgorithM Figure 3214 as a

reference flow chart. '(Is Box 2 needed in the new flow chart?),

2. Draw a reference flow cHart for finding the GCF (greatest common factor)

of three non-negative integers: [Note that if X = GCD(A,B), then

GCF(A,B,C) = GCD(X,C).' Hence use the preceding problem.]'

3, (a) In Section 4-4 you constructed a flow obart for finding the number

of triangles having sides whose lengths are integers not greater

than 100. Now make a flow chart for solving the same problem with

the added restriction that no two of the triangles shall be siitlar.

(Hint: Use the preceding problem.)

(b) Modify (a) so as to output Instead the sum.of 'the perimeters of the,

triangles described in (a).

6

239

2,41 .

5-3

*4:, Draw a flow chart to output all numbers less than 10
9 which are

expressible as the sum of two cubes in two different ways together with

the 116 decompositions into the sum of cubes. [E.g., since

123 + 13 = 1729 = 103 + 93 the numbers 12, 1, 1729, 10, 9 would be

output.] Eliminate all proportional combinations such as

243 + 23 = 18832 = 203 + 183.-

e.

.

O

4,

6:4

0
04 A

0 1,41

,. .,

1

..

* This problem can be solved by 'brute force, testing every set of four cubes,
-

requiring 10
12

loops. Ydalshould try to find 'a more efficient way re-

quiring about 10 9- loops. Finding this more efficient me6o4will require-
-

some ingenuity.

240

p-4

5-4 Procedutes------------

A runctional subroutine is used when the functional value is a single
numerical value. This value is assigned to the variable named in the re-
turn box of the reference flow chart. Here this value is picked up (read)
by the main flow chart and employed in the appropriate computational step,

_such as in

or as in

a

Y 4-5 + surr(x)

As we have already seen, there arg many important functions whose func-
tional values are vectors. quch functions are called vector-valued functions.
We shall need sulFoutines

for evaluating such functions.
These' subroutines are

called procedures. As be seen, the operation of a procedure is different
from that of a functional

subroutine in several respects.

We give an example of a reference flow chart for a procedure in Figure
,

5-16. This flow'chart is for a sorting process which is still different from
those considered. in Chapters 3 and 4.

We see that the procedure
reference flow chart again has a funnel in which

appears the name of the procedure and a parameter list. There is a return box,
but with no variable init. With the experience you have had by now it should
be no'trouble for yOUto check that this flow chart will take values assigned
to (ai, i = 1(1

.
)n) and sort, them so as to be indexed in increasing order.

But how is the main flow chart to call for such a procedure to be executed?
The situation here is unlike a functional reference where h. single numerical
value is to be returned and employed in a computational step. Here a vector of
values is to be "returned" instead..

What is the moutput" of the sort procedure? How ilSthe main' fl chart
affected? These are the questions we will answer next.

24191'4 Pl,o ,.3

SORT(n,(ai,i=1(1)n))

_ .

i (- 1

1

i < xf-1

i (- i-I-I

(-j+1

<n

- 3

<a
F

t (- a
ftv

a

t

Fibre 5-16. Reference flow chart for sort procedure

First we point out that while a call for a functional evaluation always,

comes duiing a calculation step, this is never the case with a procedure. In-

stead, we have a special box
4

containing the name of the-procedure and a parameter list not usually composed.

of the same variables as that in the funnel but matching it item for item

like fingerp and gloves. And the Whole works is capped by the word "Execute."

2112 '

O

5-4

- .

Here in 'Figure 5-17 we see a typical call for the sort procedure of Figure 5-16.

t,

EXECUTE

SORT (m,(bi, i=1(1)m)

Figure 5-17. Call for sort procedure
,

The effect of this sort procedure on the main flow chart will be to take

the values of the vector b and reshuffle them so as to be indexed in increas-

ing order. For example, Table 5 -1 shows the "after" values of the vector b.

Table 5-1

This exhibits another differ ce between the effect of procedural- and

functional- flow charts. Ramely,tthat a procedure does change the values

of the variables in the main flow chart.

But how shall we visualize the way in which the proCedure is carried out,

the coupling of the main flow chart and the subroutine. The description given

below in terms of the old reliable window boxes is in very_close analogy to

b
1

b
2 b3

b
4

b
5

. b7

b8

before 7 9 2 1 6.3 -1.5 2

after I -1.5 1 2 2 6.3_ 7 9

what actually goes on in the computer.
W

4E11,114 with the functional subroutines we have the sealed qick chamber

in which the procedure is executed. But this time one thing is missing and-

one ihingla added. There is no window for reading the "functional value" but

in its place there is a long chute boming;out from the side.

.243

24.5 4

-5-4

Figure 5-18. Exterior and interior views of sort procedure
of Figure 5-16

In the interior of the sealedtchamber we are somewhat surprised to See

window boxes only for the local1variables, none for the non-local,variablesi

'That is, there are no window boxes for the variables which appear in the Para-

meter list in the fUnnel. NNote that in the illustrated case, the variables i
,

is not considered to ,be in the paraneter list. This list is considered to.con-
.

sist of ns ara2,' a3, avetc., with the llet subscript being the value ,of n.1.
In the example under discussion, o511T- oxes.6

4r i, j 'and t will be

found inside the brick chamber, And now wh n the procedure is called for,by

this box in the main flow chart

EXECUTE

SORT (m,(bi, i f1(1)m))

Df)Pt e

a surprising thing happens. Instead oft e values of 1e variable6

Chi, i = 1(1)nd .being put in the funnel, the wihdoWboxes belonging to -these

variables areibrouelidtO,the funnel and opped'in,,the order .n which -they

appear in the paraMeter list. (Figure15- 9).

'4,

2
4,>

;

Figure 5f19. Main flow chart window boxes coming to procedures

As these boxes pass through the funnel they are ,received by a specialist

of the procedure staff, the labeler:' The labeler has a stack of peelable

(removable) gummed stickers. These stickers are imprinted in order with the

,variables of the'parameter list appearing in the tunnel of the procedure. As__

the boxes come to the labeler he slaps t sticker on each, covering Sip the

original inscription on the bok. (Figure65-20). t -

C>

NN

Figure 5-20.

(

-If

When the last window box has been labeled the chamber is sealed so that

there is no further contact with the main flow chart. The interior of the pro,

Cedure of this stage is,as in Figure 5-21.. For, tHis figure me are assuming the

value of m equals 11.)

Figure 5-21. Interior of zoCedure after execution
is called for

iLo,

11

chart. The assigner

without even knowing

values in these boxes

prOgram.

p ". P.11

and the reader operate using the variables on the,,stickers

what the original variables on the boxes were. The initial

are of course those they brought with them from the main
4

When the execution of the procedure has been completed and we
,

come to the

return 'kik, what,then? Well, at this point the door to thecchute opens 'and

,all the boxes with the gummed stickers are dumped out. Here another specialist,

the unlabeler, peels off the gummed stickers and the boxes return to the main

program bearing their original inscriptitns. (Fig. 5422)

Figure 5-22. The unlabeler at. work

2146.1

,
Now we carrgigarize the net effect of the .procedure. A certain well-

defined list of main flow chart variables has "fallen under sway" of the

reference flow chartand some, or all, of these variables may have had their

values changed ih the process.

An example of a main flow chart which uses the "sort" pro6edure is

given in Figure 5 -23. The flow chart there will cause a number to be input

and assigned to k. Then 2k numbers will be input and assigned to b1,b2r

..., c1,c2,..., ck. For the-first use of the sort procedure, the variables

k, b1,b2,..., bk are substituted for n, al,a2,..., an in the'definition of

the procedure. Then the steps` in the procedure itself are carried out. Aftei.

returning to the main flow chart the value of k will be unchanged, but the

values of bl,...,bk will have been rearranged into noft-decreasitig order.'r

The second use of "sort" will cause the c's to by rearrani41..
Finally, the b's and c's are output,,the smallest .,k follOyed by

'the smallest c,' then the next smallest bf followed by the nett smallest c,

and so on.
..; .

*,

It should be recalled that the local variables in Figure 5-16 are 1., j
ft

kAte-
°

9
1 \

/7.
Ik e....'

1.

3

tbi,i.= 1(1)k)

= 1(1)k)

EXECUTE,

SORT,ck,(1) 1(1)40)

EXECUTE

SORT (k,(ei,i= 1(1)k))

Figure. 5-23. An-example of execute boxes

247

;

-A

Exercises 5-4 Set A

1. Rewrite the flow chart of function ABSOL(X) from Exercises 51

No, 4, to make ABSOL(X) -into a procedure.

blem

2, (a) For complex numbers, of the form a * 13i prepare a reference flow
4

char for procedure exadd(al,b4ya2,b2,a,b) which accepts the real

parts al and a2, and the imaginary parts bl and b2 of two

complex numbers and returns their sum (a,b).

, (b) Similarly, prepare a reference flow chart for procedure cxsuht Which

.computes the difference of two complex numbers: (al +,bli)-(a2 + b2i).

'(c) Prepare a procedure flow chart for cxmult which yields the product

of two ,,complex numbers.

(d) The quotient of two complex numbers is to be giVen by procedure

cxdiv. Prepare the reference flow chart. Take cel,b1) as the

d4idend.

(e) Prepare a flow chart which inputs two complex numbers and an index

over which indicates the operation (1 for add, 2. for subtract,

3 for multiplication, 4 for divis to be performed on them.

-. The output will be an echo check input followed by the result of

tp computation printed in thelorm a "+" b "i ". Then read a new

set of data.

,
, .._

3. Prepare the reference iiliw cAa4rt for g procedure called SORT20 The pare-

teterlist is to be-(KI(Avi°= 1(1)KY, (Bi,i = y.)K)2.--, (Ai) is a4,rector

whose values are to be:arranged in no&decreving order and (3
i
) is

a vector toe 'rearranged in the same way as (Ai), so that Bo. remailp

associated with, A. .Assume K < 1?3 .

_
,

4. (e) Prepare a reference flow Chart for a pre.ceddre that receives a given ,.

integer N and returns COUNTFAC, the count of integer factox\which

. N has (Hint: °You May Wish to aoippt-Figu4-12.) Could this

procedure have been written as a function? 1 i .

, .
. .

(b) prepere ; flow chart which, uses COUNTFAC to output a list 114* 41
,...

prime numbers up through 1000. Of course, a prime number is-an

integer having onlY',two factors, 1 and the number itself. Explain
s.

° ' ,Wily this is-li very inefficient, method for making §e list of ,primes.
.

. .

'4 4,

Y

4,248

4- 2

'.

5 (a) Prepare a flow chart for a procedure aliquot(number,PARTS,n)' which

takes a given integer number, less than 103 and returns its aliquot

parts in the first n elements of-vectbr PARTS. The aliquot parts

of a number may be thought of as being all its factors except the

number itself; e.g., the aliquot parts of 12 are 1,

(b), A "perfect" numbet was considered by ,the Greeks to be a number having

a value equal to the sum of'its aliquot parts; e.g., for 6, 1 + 2

3 6. Prepare a flow chart for finding all perfect numbers up .'

through 500.

(c) 220 and 284 are referred to as "friendly" numbers since the aliquot

parts of 220 total 284, and the aliquot parts of 284 total 220.

Prepare a flow chart for finding all friendly numbeis up through 500.

Exercises 5-4 Set B

1. Draw a functional reference flow chart (LEAST) to find the algebraically

smallest element of. the vector A With components

otien

of the smallest element. of A. . %
s

3.. Draw a reference flow chart for a proCedure called MARKS to find both

the smallest elemeht of A and its4tUbscript. Can a single functional

reference flow chart be used instead?

Al, A2, ..., AN.'

Ts e 4

ercises 5-4 -Bet C ,

i

ah

1.' Recall Problem 8, of Section 3-5, Set A, to determine-the actual degree

of a paynomiakgiven n and the set of coefficients (ai, i = 0(1)U).

For this problem, assume the,coefficienteare integers ah.d. 6 anthe

flow chart for a proceipre called DEGREE whichaccompUshes the same '

thing as Problem 8. That is,,another program can cell on DEGREEa
by supplying it skIt215e, polynomial data n,- (ai, i =-.0(1)n)..as

arguments: DEGREE returns control to the calling program When it has

revised ('or "yut Ws stamp of appioval on") the value of n. Assume

the apparent degree is < 100.

;
249 '-4 :t°

5-4'

2.

,

Draw the flow chart for a procedure SIMPLIFY, for taking a polynomial

with integer, coefficients, represented by ,n, i = 0(1)n), and

replacing it by the polYnomial obtained when one divides each coeffiCient

by the greatest common factor of the coefficients. (Hint: Use the GCD

'function reference flow chart.)

*3. If a(x) and b(x) / 0 are, polynomials with integer coefficients,then

there exist a non-zero constant c, and polynomialk q(x) and r(x)

with integer coefficients and with degree r(x) < degibe b(xl so that

c a(x) = q(x) b(x) + r(x) .

This is called the remainder theorem for polynomials. The process of

finding r(x) is referred to as reducing a(x) mod b(x).

Draw the flow chart for a procedure called REDUCEMOD which

takes two integer polynomials a(x) and b(x) represented by.

n, (a., i = 0(1)01 and m, Cbi, i = 0(1)30 where 'b(x) is Inown

to have actual degree m and to be alreadY simplified as in

Problem 1, and

(ii) computes r(x) as in the above,formula, simplifies r(x) as in

Problem 1, and replaces a(x) by r(x). Be sure that no fractions

occur in thlsgmAxigaLisaLAQIhAtthgire yl

(Hint:: Use the procedures DEGREE, SIMPLIFY and \GOD.)

it. y

*4. Draw a flow chart for finding the greatest common divisor in simplest form

of the two, polynomials with integer coefficients. BY a greatest common

divisor of two polynomials we mean a polynomial of highest possible degree

which is a divisor of both the given polynomials, the quotients being

permitted to have fractional coefficients. Pariotting the derivation of

the Euclidean algorithm in Section 3-2 .we find that this greatest common

divisor is unique except for multiplication by any non-zero rational

number. By "simplest form" we mean that the coefficients must be integers

having no common factor. It is quite evident that multiplying the, given

polynomials by non-zero integers will .not alter this simplest greatest

common divisor. (Hint: Use the procedures DEGREE, SIMPLIFY and

REDUCEMOD.)

2

* 1

These problems are quite diffisilt. The student will be a ble to solve them

only with considerable time and effort. .

.

..,-.4'0 .. '252'::
1!)

4-

5-5

5-5 Extensions to Reference Flow Charts and their Mods

Recall that in the window box model, we always drop numerals written on
mk

slips of paper into the funnel for functionals and we drop the window boxes

themselves into the funnel for procedures. What would happen if we were to

drop slips of paper into'the procedure funnel? ,Would there be any advantage

in being able to do this?

In the first case (slips of paper) we do not want what goes on inside the

sealed chamber to directly affect what is in any window box on the outside.

In the second case (boxes) the action'withip the chamber can affect the con-
,

tents of window boxes which normally "reside" outside the procedure (chamber).

Using slips of paper or using window boxes actually corresponds to giving

a reference flow chart the data itself or to giving the address in memory

where the data can be found. If the reference flow chart knows the address of

a variable A, it can change the value of that variable. If it only knows

the value of A but doesntt know where it came'from, it can use that value

but cannot change it in memory.

If we want to be sure that aHvariable in the parameter list of a procedure

remains unchanged no matter what happens inside that sealed chamber, we shoUld

drop in the slip of paper'and not the window box containing that slip of paper.

As suggested in Figure 5-24:whena slip Of paper flutters in instead of a

window box, the assistant puts tein the window box corresponding to the

Appropriate (non-],ocal) variable of the procedure. Remember that such a

is called non -Thcal because it can hAvualues assigned to it from

the Outside. -Os windowbox_always remains inside the brick chamber.
46.

Figure 5-24. As

Y'

start assigningto a variable

'5-5

Now let us ask the converse question. Would there be any advantage in

being able to drop window boxes down the funnel of a functional subroutine?

AccOrding to our model there would be no way of getting the boxes back'out.

The situation is summ&ized in Figure 5-25. This could be fixed by attaching

a chute leading from the chamber but then the real distinction between a

functional subroutle and a-procedure is lost.t

Figure 5-25. Life imprisonmeit in a-functional-
subroutine

Alternate exits

There are frequently situations -in which we could use a procedure to

indicate (perhaps in-addition to a calculated result) which of two or more

paths the main flow chart should follow. In some reference flow charts, there
4

are alternate paths to be pursued because unusual (or error) situations may

arise. For other reference flow charts the selection of alternate paths may

be the principal purpbse of the procedure.

One technique for choosing. alternate paths is to include an output

variable whose value will tell the main flow chart which path to take. his

techniq4e is illustrated in Figuie 5-26 for a procedure with the purpose of

determining*whether two complex'nunbers a + ib and' c + id are equal.

1.5r,ae
,

programming systems a°, in fact, provide addresses (i.e., the boxes) to
functional subroutines. If the system'you are using does do this you should
know about it since assigning values to such variables in a.functional sub-
routine will yield different results depending on the, programming system.

2% `"'

0

5-5

COMPEQUAL(a,b,c,d,n)

ti
. Figure 5 -26. Test for equality of complex numbers -.

From this figure we see that the only effect of the, procedure is to .
'assign values of zero or one to the variable n depending on whether the

complex numbers are or are not equal. Since n is the output variable, it

appears in the parameter---14:4.7(Conld this flow chart have been prepared as-

' a ftnOtional reference instead of a procedure?)

Figure 5-27 shows this procedure could be used in a main

flow chart to decide whether or not the complex numbers, x + iy and u + iv

are eqpal.

ti

Figure 5- 27. :Are x iy and u + iv equal?

253

,^

I

255 .

5-5 4
A second technique for using-a procedure to choose alternate paths is that

of actually combining the EXECUTE box and the decision box. '7.n the flow chart

language this can tie pictured as in Figure 5-28.

cs

7

EXECUTE

COMP= (x,y,u,v,box 9)

EQUAL INOT EQUAL A,

Figure 5-28. Choosing alternate paths

The parameter list of COMPEQU contains, in addition to variables for the

real and imaginary parts of the numbers to be compared, the flow chart

number identifying the start of an alternate path in the flow chart... We

deliberately underscore the flow chart box number (procedural langu es of-

tencalled it the statement label) to distinguish it from a variable In

Figure 5-28 the normal return leads to box number 8 while an alterna e return,

'leads to box number 9. A referenCe flow chart for-this procedure is shown

in Figure 5 -29.

(3

COMPEQU

Figure 5-29. A procedure to make a choice

1

. 1M

5-5

Compared with Figure 5-26 we see that boxes 3 and 4 of that figure have
/'

been eliminated'.. A new terminal (we always use circles for the terminals of

pur flow charts) appears with the direction "GO TO x". This'is an alternate
exit from the procedure. We now have three distinctly different ways of
ending a reference flow chart, each represented .by a distinct box as shown
in Figure 5-30.

(a) Return a value

1

(b) Normal exit (c) Alternate exit

Figure 5-30. Comparison.of reference flow chart endings

z

Form (aria used only'in functional
reference flow charts to indicate,

that the value of a local variable x is to be returned to the ea/ling
prOgraM. FOrm (b) is used in 'reference flow charts for procedures to indicate
thiatvihe procedure has been completed and the next flow chart box in normal

sequence is to be used next. Form (c) is used in reference flow charts for
procedures to indicate that the procedure has been completed and the next
flowcport,box to.be esed is ,x.

O
.

Thd Vindow bOX model of our procedure needs' a new feature
GO TO terminal box. It is pictured in Figure 5-31.

t

Figure 5-31. A choice procedure

255 /'

25:1'

L

to reflect the

1

or .

5-5

-When the master compu,ter wants to use COMP= he sends in the window boxes

inscribed with ,x, y,-u, and v and in Addition a slip of paper on which is

written box 9 (the label of the alternate next flow chart box). Four boxes

and the sig.) of paper are dropped in the funnel in the proper order; gummed

labels (a, b, c, d) are stuck on the four boxes in order and the slip of

paper is assigned to the local window box x. Now the busy crew inside the

sealed chamber gets to work until finally the. four boxes slide out of the

chute. If the crew determines that the alternate exit is to be used, they
d

shove window box k up against the GO TO window. In collecting these boxes,,

the reader and his crew now check the "GO TO" window to'see whether it it

empty or contains the label of a flow chart box. The reader makes a note of

whatever is in the window and returns it to theinaster computer who now knows

which flow chart box is next.

Function Name Arguments

be valuable to be able to use the name of a reference flow chart

(either a functional reference or a procedure) as an argument of a procedure.

Suppose, for example, thatwq want a procedure to compare the values of

functions f(x) and g(x) for a given value of x7 Figure 5-32 shows how

such a-procedure'can be flow charted.

40.

12

I.

EXECUTE

'FUNCOMP(SINE,COSINE,Y,box 14,box 15)

FINCOUP (f,g,x,n,m)

1
1

1
SINE(Y) = ISINE(Y) > ISINE(Y) <

COSINE(Y) :COSINE(Y) ,1COSINE(Y)

13 I .. 14
1

15

(a) EXECUTE box (b) Reference flow chart

A
Figure 5 -32. Procedure to compare functional values

r.:

256

era

5_,

In Figii4 552(b), du mmY names for two functions, f and g, appear as
, -

"formal parameters" in the parameter list of FUNCOMP. The correspond,t,

"actual parameterin this example, the functUn names sfii and.COSINE) are

in the parameter list of FUNCOMP in Figure 5-32(a). In addition, FUNCOMP has

two alternate exits (the formal parameters n aqui_ m corresponding to the

actual parameters box 14 and box 15).

When FUNCOMP is called upon for execution,, the actual parameters are

associated with the formal parameters of the reference flow Chart. That is,

FUNCOMP is instructed that,, for this execution, f isto be considelthe

sine fun6biori and g is to be considered the ccnifunction.

We'are sure that the student will think of ways to extend tbe window box

model so that function names can be used inside a sealed chamber for a proce-

dure. We will leave this final extension of the model up to your isisginations.
o

ti

r-N

ft

A' .

o

;

°

0 0

0

Co

Q
.O 1 0 6 .

.._10ft
14 OZ

C o

0
V''

;'? 0

1
0 0. 9

257.

'259
O

5-5

Exercises 5-5
(-

1. Draw a flow chart of a procedure for solving two equation in two unknowns.

Prepare an alternate exit for the special case when the two equations

correspond to parallel or concurrent lines.

2. (a)- Draw a reference flow chart for a procedure to find the real roots,

q,any quadratic equation (see diagram in Chapter 1). ,Youroflow .

chart is to use alternate exits to distinguish finding of'nO\lrots,

one root, two real roots, or imaginary roots.

,.

(b) Draw a flow chart which will use the reference flow chart of part (a)

and willprint the roots folind with an appropriate message.

(c) Draw a flow chart to do the same job as the flow chart of part (a)

but without using alternate exits:. You must-provide a variable which

will carry back to the main flow chart the formation as to which pf

the four possible cases has occurred.

(d) Draw a flow chart which will use the reference flow chart of part (c)

and print out the roots found with messages as in 2(b).

3. Refer to Problem 1,-Section 5-3,-Set A.' Suppose the flinCtion f were,

redefined ab

+ y)2 + 5
x -'2

This function is not defined at x = 2.

Draw two procedures for computing values of f; one using an

alternatp exit, the other using a variable to. carry the information about

the exceptiodhl case back to the main flow Chart. In each case show a

flow chart fragment which calls for f and computig .6.. -

I
Z' = f(r,$) + 6 xtW

4. it is desired to sum up the values of a.functiori at a number of equhlly

spaced-pointsin-an interval starting With the left endpoint: Draw a

flow chart for, a procedure which will carrY this otifor any function,

any interval and any spacing (or increment). Provide an error exit-for

the case that'the increment is negative or that the number given as the

,right endpoint of the 'interval is to the leftlof.the leftendpoint.

NO%

'258

2U0

.

'5:6* Character strings.

4
Problems in an area which is often called "syMbol.manipulation" will be

considered in.Cgpter- S. Special procedures are needed to handle these
(- \

lems. In this §e.ction we will;deVelop some of these Special prOcedures.'

Webeging4oy ashumi g.that we have a string of characters, _which we will

dezotke These characters- could be numbers, but in the area

of immediate
.

ere t will think of them as being mainly' alphabetic charac-

ters. We will include punctuation marks, spaces, and digits, as well as all

the letters of the alphabet.

. .

A string therefore represent sentence. For example, the string

.might Abe:. The quick brown fox jumped over the lazy dog. ,In this cased S
1

is ----7-A

T, s2 .i.e. 114. is e, s4 is a space, s5. is' q, and so on..

.1

. .

A string co also represent the digits and dcita..._al point of a !number such
PC , \nb A

-as; 3.14159. In his case si. is 3, s2 is the decimal point, s
3

is 1,
. . ,

and so on. `-\

_

A string could also represent a mathematical expression slaghlas

x + s(t + u(v + w)): s
1

would be r, s
2

the etc.
it

a
To begin with we_will need natation for convenient reference to stringt,

ilemhts'of strings and substrings. Sdhscripted lower case letters will be

UseXto identify individual elements of strings as in the last few paragraphs.

string (or a substring)_can be referred tobithe familiar lodking notation,

i = 1(1)r0- Which is read as "the set of elements si, frith i varying

'from 1 to n in steps of 1. Such notation is convenient for

reference.to substrings. For example, (si, i = 3(1)8) refers to re third

through eighth (inclusive) elements of a string'. On the other hand, s

4explicit notation beComes cumbei-dome:when completketrings SrenecesS . If

the length ofsa string is n, (si, = 1(1)n) refers to the coliple e string
.."'"but We will also useashorthand and calf this string (a capital lettdr

with a bar (or string) dver it).) ',.0'''
% A,- .

.1
...4..

- fou are undoubtedly wondering what the didtinqienfisbetween a - string and
.. . fr.".

a hector. Although we usually think of the,...geMi6onents of a vector as having, .

numeric values and the elements of...a...eti.q:ng as being characters;'this is not
.,-- .

the basic difference. The xeerr difference is that operations on vector% do not
to.

normally change thq-nuffiter of their components; operations on strings frequently

change the-nuti5er of -their elements. .

1.

'

259 9 I

O

5-6

In problems concerned with such strings there are certain basic procedures

one would like to have available. One of the simplest of these is a proce-

dure for searching a string for a particular character. For example, we

might wish to find the first space in a sentence, or the decimal point in a

nunber, or the first right parenthesis in a mathematical expression,

A procedure for carrying out this task is shown in Figure 5-33. The name

of the procedure is chekch (for "check for character"). As input variables

it has the length of the string, n, and the name of the string, S. Another

input variable is denoted by m; the search for the required character is

chekch(n,Lm,c,p)
n = length of string

S = string

m = subscript of first
element to be
examined

c = character variable

subscript at Which

0

Figure 5-33. Searching ±tor a character

c abiTte--

s ,

supposed to begin at sin. ThiS feature makes the procedure much_mo;e useful

than if the search always began with Then the final input variable has as

its value'the particular character of interest, and it is denoted by C. The

Only Output variable is p, lihich stands for the subscript at which the

character represented by c, is first found. The search for this character is

begun with i
m

, then if sin is not equal td c,
sm+1

is tried, amd -so on..
1

The first appearamee of the character value of c is then s . Then qer-
p

standing will be that p isset equal to zero if c is not equal to any bf,

260

2

/

the s b.tring sm+1, sn.

051;

e can expand the idea of the chekch procedure if, instead of searching

.4 st ing for single character, we consider the.prObleM of searching a string
-;""

-

5-6

fo' a specified substrinv

Suppose our n string is a sentence; such as: The quick brown fox
z'jumped over th 1 .azy dog. Then our neviprocedure could be used to find the

- =

number of o currences of the substring which consists of a particular word,

such as: the.

The procedure is given in Figure 5=34. The name of the procedure is

chekst. The variables are the same as in the preceding section except that

the single variable c is now replaced by the length k of the, specified

. substring, followed by the name of the substring itself, C. If p is not set

equal to zero, then sp,s
p+1' "" is,the first occurrence of the sub-

,

string in which p > m.

On entry to the procedure the variable '2, is given the value of the

starting point m. Of course, there is no point in looking for, the first

ance o
1,

eginning wi , if this starting point is too far

along-the string, i.e., if i > n-k+1. If* 2 <n-k+1 the procedure chekch

is used to fin4 the first occurrence of cl, beginning the search at

Then, if there is no occurrence at all, 1) is set equal to zero, and

there is nothing to do but return. If there .is an occurrence, but, the value

of p at which it occurs is -bac) large, then p must be set equal to zero

before returning.

If there still has been no return from the procedure, the next k - 1
--

charac rs sp+i,sp+2, sp+k-1 mast be compared with c2,c3, ck.

If there is agreement, the procedure returns,, he value of p being Igtect

astit Stands. But if any pair do not agree, the entire process must be started

ov2Aeer again, but this time with the new starting point at s 1)+1 . Accordingly,rv

i is assigned the value p+1, and the process is repeated, except, of course,.

for the initial assignment to i.

4

ey

Off

, 5-6

of

chekst(n,S,,m, k, "d, p)

2,<-m

2

C2° > n- k+

F

n = length of string

S = string

m = subscript.of first
element of S to be
examiripd

k = length of substring

= substring variable

P = subscript of first
element of S. at which
a match occurs

EXECUTE

dhekch(LA.2,C1,p)

t

(p
=0

5

(p. > n -

r<-p+

r <-1" +

.

.1,4- 2'

j + 1

8

CST

2 4 p + 1

Figure 5-34. Searching for a string -
r

262

6 U

7

11

Lp 0

. ,

5,6

Figure 5-34 is a good example of one procedure being used by another as

d -cussed in the preceding section. In many cases, up to now, we have drawn

'flo charts which were thougt of as "main flow charts". Now, we can consider

such low charts as being protedures themselves. In'this way we see hd'w more

'and MC e complicated building blocks can be constructed.

`

Exercises -6
1

1. Constru t a brocOmre to be called contch for counting the total number

lof'occur ences of'a specified character in a given string. The parameter

list shoul be (n, 7§, c, count).

2. In an arit si,etie expression, parentheses must "match up." That is, every

left parenth is must have a corresponding right parenthesis. Suppose

that during th scan of a string representing an arithmetic expression,

a counter is ke t which starts at zero, adds one for each left parenthesis

encountered and ubtracts one for each right parenthesis encountered.

Then if the exprigm-is torrectly_writter4with-resRectimrenthesee),

the counter must never have a negative value and must have a zero value

at the end of the scan. Prepare a procedure, flow chart (called parenchek)

to determine if an arithm,tic expression is properly parenthesized.

3. Constrtet a procedure called contst for finding the total nutber'of

occurrences of a specified substring in a given string. The parameter

list should be ,(n,l; k, C, count).
A

'4. A teacher has the daily grades for his class for, an entire term in a

string T. The Oades are grouped by studentI al, ai are

for the first student, ai41, aj are for/the second student, etc.

(a) Flow glart'a function called aver which will average elements m

through n of string A.

(b) Write a program using aver which inputs a string A, inputs the"

first and last subscripts, m and n, of the grades for a single

student, outputs these subscripts togetherlwith.the student's average,

and then returns for data on the'next student.

263

265

Chapter 6

APPROXIMATIONS

6-1 Introduction

'N

4.
In the preceding chapters of this book you have learned how to construct

algorithms for the solution of a variety of problems. One of the important

advantages of constructing an algorithm for the solution of a clads of prob-

lems'is the ability to subsequently delegate the execution'of the many instruc-

.t.ions. contained in the algorithm to someone else. In particular, this someone

else may be a digital computer. A computer'is an obedient and docile servant

of mankind, but like most servants it has certain peculiarities and idiosyn-

crasies which can be exasperating and sometimes lead to difficulties. In this

chapter we shall explore some of the problems which arise when algorithms are

executed on digital computers. The particular problems which we shall discuss

arise out of the way in which computers handle-riabers.
°

ou lave oeen accus ome o us ng numbers for at least as long as you haVe

beery in school and are therefore quite familiar with them. Familiarity often

breeds contempt; and you may therefore not appreciate the elegance and sophis-

-tidation with which you treat numbers.,

In your earlier study of mathematics you have 'learned about the system of

real numbersr. From the mathematical point of view, this society of real numbers

is.extremel4 democratic in the sense that any real number is judt as &odes

'any other. /However, when you have td write numerals representing these numbers,

certain differences appear. The real numbers which you encountered first were
t

whole numbers which had rather simple names such as 1, 347; 5763897. You also

learne3 -166ut fractiOns like
1, 17

etc.,L Then there4were-deciMal fractions

such as those occurring in 3.1416, 0.9823, 6.17. Finally, you learned that

there "are real numbers which cannot be expressed in any of the previdus forms.'

Ihe most bowler eXample of this kind of number is v. At this point things

get tricky. We can apprdximate the number v by means of ordinary fractions

such as
22

, or by decimal fractions such as 3:1140P or 3.1416, or 3.141592,7
and many-others. You also learned about numbers like the squire root of two,

cube root of three, fourth root of twenty -six, etc., which could be approximated

but not expressed exactly in any of the previous three forms.-

The use of digital computers imposes restrictions on the freedom of expres-

sion4of:numbers. At this point review carefully Section 1-5. In particular,

6-1

numbers may be expressed ip two forms. The first of these is the integer form.

The second is the,so-called floating-point forth, which consists of a series of

digits with a decimal point. Numbers which are not in one of these forms have

to be converted to one of these forms, or if this is not possible, suitable

approximations must be found.

Even with these two forms there,are' limitations. A n ral property of

integers is that their size may be as large as you pleas In a computer,

however, there is always a limitation on size as the machine cannot handle

arbitrarily large numbers. The maximum size of the integer which may be ex-
.

pressed in a computer depends on the particular machine used, and is a function

of how the machine was designed. Most computers can handle integers whose ex-

pression requires up to 10 'decimal digits. If larger integers are necessary

in the solution of certain problems, then special steps have to be taken to

aceoi%plish the task. In the base of floating -point expressions, there are also

iVitions, which depend on the machine used. In most cases, machines will

naturally handle numerals requiring up to eight deCimil digits, and a e cimal

point. This is usually sufficient to handle the majority of problems but again

special procedures may be-deVeloped,if greater-accuracy is ,required..- You-may

think that such a degree of accuracy is sufficient, since you probably have not .

had any occasion to do problems requiring greater accuracy. This, is probably

due to the fact that manual procedures are extremely messy with large numerals.
,P.

This is one reason why computers are so useful, In. the. remainder of this chapter

we will show you examples of theaneed for this kind,q,accuracy as well as

examples in which greater accuracy is required.

Exercises 6-1 4

1. For each of the numerals listed below, tell whether the number can be

expressed exactly in digital Corm (base 10) br not. If the answer is

yes' expfEss the number digitally. 1

(a) (f) 3177

34.2

3426.

1

9
5

(g) 250;827.36
0.

266

6-2 .ChoPpini and Rbunding to n

In Section 2-5"you studied the genera problem of roundoff. In this

chapter we shall use two of the types. yo studied. You may wish to review

these briefly.

a

6 -27

O

By chopping a number x to n digits we mean taking the digital rep-

resentation or x, locating the first nonzero digit, and replacing by zero
all digits n or more places to the right of that"digit.

AO
Examples:

x Result of chopping to digits

3:54276- .4 :,. 3.542

.0079629 3 .00796

5742 ? 3 5740

By rounding a number x to n digits we mean the process of lycating

the nth digit following the first nonzero digit, increasing the absoTe value
of the number by 5 (for base 10) in that4.igit position, and then chopping

,

x

3.54276

n

4

,

Result of rounding x to 'n digits

3.543

.0079629 3 . e00796r
5742 0 3 . 5740
5745 3 5750

.
.

Exercises 6-2

In Exercises 1 through 4 chop'the given number to 3 digits,

1. 497,46 2. .007235 3. 42.37 4. 7777
,

5-6. Round to three digits the number given in Exercises 1 through 4,

respectively. 44,

267

N
.41.1.-

. Oft

ti

6-3

6-3 Three Digit Arithmetic

By using a computer to execute the algorithms which you have constructed

earlier in this course, you have probably learned the hard way that a computer

operates with integers annloatin&-point numbers. Here we are primarily con-
. .

cerned with floating point arithmetic. 'Computers generally execute your
f
pro-

grams by using a fixed word length for floating point numbers. Eight decimal

digits constitute a popular word length, but some machines use shorter or

longer words. We intend to show you how computers can occasionally accumulate

sizable errors, If possible, algorithms, should always be constructed so as to

minimize errors. Since computers often carry out millions of consecutive

arithmetiC operations, the errors generated can become quite large. Do not

be frightened. We purposely are about to shOw you fairly simple, and yet

horrible examples illustrating what can happen. Things coo iot often get this

bad, but your ought to be on guard against them if you are going to use com-

puters .

To make the arithmetic relatively easy to follow, we shall work with e

floating-point word length of 3 or 4 digits in our examples. The results

will -then, be-somewhat analogous -to what -would happen-if-you used-
,

in an 8-digit word length computer. So, if your computer does 8-digit arith-

metic and you have, say,'3-digit data, then in some algorithms you may have a
.41r-

built-in cushion guarding against accumulation of error. But in other problems,
-4*

the results are independent of word size in both computer and data, as you

will see.

How does a computer do ithmetic with floating-point numbers? Since the

word length is,fixed, say 3- Bits, each number, and.eacil intermediate result

must have 3 digits. For the correct interpretation of this last statement we,'

must not regard a single multiplication operation as having any intermediate

steps. For example; in multiplying 92.7 by .876 our three digit chop

computer would first find all six digits of the product and then chop off to

three digits. To illustrate:

. RIGHT WRONG

1

9

.8

2.7
7 6 1

9
.8

2.7
7 6 h%

Q.
, 5
6 4

5
8

6

6
9

2

7
6
4

4
1

8 1.2 b5 2

268

2'29
/

81.0

6-3

Thus inour computer arithmetic

92.7 x .876 = 81.2 .

In the problem

92.7 x .876 X 4i35.

the computer will replace 9247 X .876 by 81.2 and then multiply 81.2.
by 4.35.

One additional unfortunate complication is due to design and engineering

problems. Computers generally do not round the,results of arithmetic computa-
tions. The last part of the execution of an arithmetic operation usually con-
sists of ignoring thope digits of the results which do not fit into a standard

floatihg point word thereby contributing to the accumulation of errors Let's

look at some examples of how a 3-digit computer would do arithmetic if it

chopped rather than rounded intermediate. results.

Addition:.

3.72 + 2.91 =_6.63 .

tr

Since the answer fits into a 3-digit word, it appears correctly.

3.72 + .476 = 4.196

The computer result is 4.19.

14.6 .0673 = 14.6673'

The computer result is 14.6.

Subtraction:

. 8.64'- 2.79 = 5.85 Computer result: 5.85

3.67 - 4.03 = -.36 Computer result: -.360

-18.3 - .0983 = -18.3983 Computer result: -18:3

1.23,- 1.22 = .01 Computer result: .0100

Note the terminal zeros which have been inserted where necessary to

achieve a 3-digit., word.

269
I tl

c4

f

. 6-3

Multiplication:

4.27 x 3.68 = 15.7136. Computer result: 15.7

27.3 x .00364 = .099372 'Computer result: .0993 115

. 999 X .999 = .998001 Computer result: .998

Division:

54.3 + 4.55 = 11.934+ Computer result: 11.9

. 0632 + .00412 = 15.339+ Computer result: 15.3

27.5 + J00987 = 2786.24.. Computer result: 2780

...

Exercises 6-1

Do each problem using Computer arithmetic as above (chopping all'inter-
k.

mediate resuAs to 3 digits) after first rounding all the given numbers to

3 digits, where nOcessary.

2. Subtract: (a)

3.
.

Multiply: (a)

4. 'Divide: (a')

5. EValuate: (a)

(b)

(c)

19.36 1.96

124.08 25 A0*

8034

-19.3

(b) 27.601

-3.4

(c) 80.07

-79.9

.0037 (b) 2.06 (c) '12.6-

.0501 I 3.1 .0004

227'+ 33 (b) 1.9034 + 1.5 (c) 7.1 + 1.0002

19.03 + 1.007 - 10.3

27.2 X 1.3 - 1.8 x 7.0

101.1 - 3.1 X 8.02
14.105 + 1.9

2270j-

6-4

6-4 Implications of Finite Word Length

The eXamples above are indicative of certain errors which pay be intro-s
dubed as, .result of the execution of algorithms. In addition, there are sur-

.

prising consequences of the fact that we have a fixed, finite word length for

all numbers. Look at what this,means. With our 3-digit computer, the number,

1

3

1

33
can best be represented as .333. Suppose we add + . The computer

.

result is .666, and,not .667 as it should be. In other words, when using

'a computer, the sum of the best representations of two numbers is not necessar-

ily the best representation of the sum of the two numbers.

Another example of the same sort is + which when performed in the

3-digit computer is .187 + .187 and yields .374 instead of .375, the best

representation of 25 . One might think that 4 he took .188 as the best

Approximation to , it would help but, alas, .188 + .188 = .376 and we are

no closer to .375 than we were before.

Of course, if the word length were 8 digits, rathei than 3, the inaccuracy

would not be as great. In using computers, however, we often, repeat calcula-
1tiont many times. Let's just see what happens if we add ten times succes-

,sively, using 3-digit computer arithmetic.

333
+ 333

.666

+ 333
999

+ 333
1.332 which becomes 1.33

1;66
+ 333

1.99
,

+ 333
2.32

+ 333
2.615

+ .333

+ .%331
3131.:

- As you can see, the error bOlds up q uite rapidlY:1ke'could have obtained

a better result by multiplying :333' by 10, getting 3.33. --..

4

64
0

In Gtapter 4 you learned how to deVise afgarithms for the construction of
tb

tables of values of a funct on. ppose you hadthe

a tale of f(x) for value x from 0 to® 100.

tasliorof constructing such i

wtilintervals of
1

-3-

You might have incorporated a box like the one below intp your flow chart.

x 0

X 4- X +1/3

F

x < 100

T

At

With a three digit computer, the result of adding .333 300 times suc-

cessively.4s .90.9, instead of the desired 100. Moreover, you would get to

100 aft 331 additions. jn other w rds, your table would have 331 lines

rather than the desired 300. Intgres ingly enough, no matter how often you
*

add 333 to 100 thereafter, the sdlt would always be 100 in three-digit

computer arithmetic. Thus, haal your problem been the task of producing a table

to 200 rather than 100, the three-digit computer would get caught in a loop

and patiently print out identical consecutive lines with the value of x equal

to 100 until someone caused the machine to stop.

If you had 8-digit word-length, the same thing would take a lotlonger to

happen, and things wouldn't be quite as bad%

Fortupately, as is usually the cage, when the source of a problem has been

identified, we can think, of ways to improve things. Part of our trouble comes

from repeated additions. We have seen,, above that multiplication reduces the

error. So we can rewrite the box above as follows
,f;

Another part of the problem arises from the fact that we commit an error
1

00,

as soon as we decide to use
3
- as the increment, since this number cannot be

exactly represented in floating-point form. Might we do better if we used,

say, .5 as an increment? First, we must determine whether the answers to

this changed problemiare in fact adequate. If this is the case, then indeed
,

272

L

6-4

1

the errors which might have resulted from the solution.of the original problem

would not arise. in tie problem. ;Things are\Tilly, not this easy,,however.

Many digital 'Computers upe the binary representation of numbers. It just so

happens that the ftumber 1.
has finite represe4ntations in both the decimal and

binary systems of numeration, .5 and ,.1, respectively. The iihmber
1
Tu ,

however, does not have a finite binary representation. This easily overlooked
4

fact could have a considerable effect on the accuracy of our results when our

maQiine converts to binary for its actual computations."

1
To see that- does not have a terminating representation in the binary10

'system, we express 10 in binary form as 10 = 23 + 21 = 1010
two

and divide

1 by it,

ti .000110011001 so.

t . 1010 1 1.000000000000
1010
110
1010

10000

ft'-)
1010
1100

10000
1010

We see that we are, in a repeating cycle and that

'

000lloolloolloolloollock..
base) two

If our colputer chops to 6 binary digits then

1
--= .000110011

two10

\.....
in our computer arithmetic., Now if we compute

0,

f °

after converting to binary arithmetic using a 6 digitcchop we have

.000110011
two

. 1010
two

.00110011

.110011

wo
CHOP-

273t)*-

A

....

.or

6-4

In our computer arithmetic we will then have

instead of

1
10 --10

._111111two

10 1
10

The value of .111111
t

in more usual numeration is

1 1 1 1 1 63'
+ + .+ + + _

Finally, if the computer outputs the answer in the decimal system it will

convert .111111
tw

'

o
to 984375ten '

which will be chopped to 9 e 4ten.

In adding-72.6:4ten times with six binary digit chop after each addition

the situation is much worse. Here we, would.have the binary result

.11110 '14z

ltwo
or

04

This,is .953125 in base ten which would'be chopped to .953.

. All of this shows us that we must know some. details of'how our computer

works internally if we expect to use it effectively..

°

Now let us look at another kind of problem,that arises out of the pedul-

iarities of computer arithmetic. In Chapter 4 we diScussedithe evaluation of')

polynomial functions. This process occurs very frequently in,a large'variety

of scientific problem areas. We told you earlier that the nested evaluation

method for polynomials is preferable to computation of powers of x since it

is more economical. Since fewer multiplications are required in the, preferred

l

m ree hod, you would,eXpect greater accuracy, and, indeed, tbis is usually the

,

c a e. But look at the following example.

Using thiee-digit computer arithmetic, it is required to evaluate the ,'

polynomial ,x3 - 6x2 + 4x .I for- x =.5.24. For purposes of later discus=

spn, imagine thatthis-calculation is done as part of the larger probl

finding a root of the polynomial. In the table below we_thall 'compute he

exgpt value, without founding, alongside the same calculationsin tdigit

computer arithmetic. r 1
.:.(

t 4
, ,.

i;
(; '

1;

b

Exact Arithmetic

x = 5.24

x
2
6 27.4576

x3 = 143.877824

4x = 20.96

_8x2 = -164.7456

x3 - 6x2 = =20.867776

x3 - 6x2 4x = .092224

x3 - 6x2 + 4x - .1 . -.007776.

6-4

Computer Arithmetic

x = 5.24

27.4

' x3 = 143.

4x = 20.9

-6x2 =

- 6x
2

= -21.0

x3 - 6x2 4x . -.100

- 6x2 + 4x - .1 = -.200

. r
Something would seem to be- terribly wrong here. Of course, wto are not

r
using the tecammsnded meth6d; sa let's try that one, using computer arithmetic,

of Course. Otherwise, we would get 'the same exact result as before. Here goes!

x = 6 II.76

(x.16)x .,x2 - 6x = -3.98
4' 1

(x -6)x + 4'. x2 - 6x + 4 = .02

3 c' ((x-6)x + 4)x = x3 - 6x2 + 4x = .104

-x3 - 6x2-+ 4x =, :1 = .004

This doesnit ldoktoo good either. The last result., using the netted

parentheseS,Inethod is'a, lot closer than the previous method, but has the

terrible disadvantage of havihg the wrong sigh. This could cause havoc if we
(,

are trying to -find &root of-the polynomial, (see the discussion of bisection

in Section 7-1) but the previous result which does have the correct sign-,is

too much in error to be acceptable. This problem could be-solved with reason;-

able accuracy on a real computer havint, say, 8-digit yordi. But if you stop
to consider that it is not uncommon to use comvaters to solve and evaluate

polynomials of very high degree, the problem of-accuracy is right back with us

again. Unfortunately, no simple answer tohis problem is knowp.,,.
. 1

5)

275 '

07G

.r

Exercises 6-4

1. Verify the value given in the text for adding
1

ten times in a binary
Ilk 10
nachine with a six binary digit chop.

2. Compute. the binary values of 3

iu 10
7

'

;

to 6 binary digits.
0

by dividing and chopping

8
3. How can the values of. --

iv 10'
and 15 .(chopped to 6 binary

digits) be obtained from previous results without using division? Find

these values.

o

.
(

6-5

6-5 Non-Associativity Of Computer Arithmetic

There are other problems and' difficulties which arise in the process of.
doing arithmetic

°1
on computers. In the first method of evaluating the"poly-

nogoo*"mlal x3 - 6x2 + 4x - .1 for x z7,5.24 we had ,Computed the
computer

results
for the, fist three terms as 143., 164., and 20.9, respective . Evaluating
143,. - 164. + 20.9 -...x.-3,--"ficra left to right, we get .200 as the result.

Since addition Of real numbers is commutative and associative, we might have

wanted to rearrange our work as follows:

(143. + 20.9) - (164. + .1) = 163. - 164.= -1.00.

This is the most surprising result yett. Since the exact valuebf the
polynomial is .007776, the result above is certainly the worst of the several

approximations which we have obtained. Bilt this result was obtained by simply
changing the order of the addition, which does not affect the theoretical

results. Comparing the intermediate results, it is of course easy to see that

the difficulty lies "in the chopping process after each operation.

Letts explore this phenomenon further.

Suppose we. wish to compute

AO 1

n
n=1 2

o

In-the table below we have computed the exact decimal equivalents of the ten

terms to be added, aswell as their 3-digit computer equivalents. We have
also added the exact values

Computation of

n 1/2n

10 1
I

2n
n=1 ---

4

Exact'decimal equivalent 3-digit computer equivalent
1 1/2 .5 -.. .500'

2 1/4_' -.25"-' .250

3 1/8 .125 .125

4 .1/16 .0625
. .0625

5 1/32 .03125 .0312

6 1/64 001565 .0156 I
.

7 1/128 .0078125 .00/81

8 1/256 , .00390625 ".00390

9 1/512 .00195125 .00195

10 1/1024 .0009765625 .000976 ,

.990234375

2 7 a
1,7*. 0

410

. 6-5

Now let us add ±n tine "normal" way, from top to bottom, using 3-digit

'computer arithmetic.

.500'+ .250 =

=

.750

.875

.875 + 0625 = .937

.p37 4 .012

.9168 +..0156

=

=

.968

.983
t_-

.983.+ .00781 =

.990 + .00390 = 993

993 + .00195 = :994

.994 + .000976 = 994

This result differs'from the exact value by .005, which is not very

good. Now let us try adding the same values n the reverse order.

.000976 + .00195 = .00292

.00292 + .00390 = .00682

.00682 + .00781 = .0146

.0146 + .0156 = .0302

.0302 + .0312 =

.0614 + .0625 = .123

.123 + .125 = .248

_.248 +..250 = .498

.498 + .500 .= .998

Here the error gom the exact result is pay .001, or one-fifth of the
II

previous error.

Ag4in, it must be pointed out that we have been giving you examples with
A

3-digit arithmetic.,only so that you might e able to follow the stepLby-step

execution of the process with greater ease Similar effects occur in real

operations on rest computers, where we perf rm'much longer series of calcula-
.

tions. As ah example, we have caputed the sum of the first 10,000 terms_of

the series E g by two algorithms.

1

278

2'0

kART

SUM 4

n 4-- 1

n n

SUM 4 SUM t
1

Figure 6-1. Summing a series forward

6-5

The result of executing this algorithm with 8-digit arithmetic is 1.6444743.
Now, using the algorithm

.

SUM (I-

1

n 4-3.0060

--1111. n 4 n - 1
n.

kit a

SUM 4 .6u4 +
2

40t.* o !.

Fiile 6-2. _SuMming a.serles banskwilid'

)

27,9
41

280,

-44

6-5
0

we get 1.6448339, a differen e of .0003596.

Even if we modify these algorithms so as to add only 1000 terms of the

series, the corresponding results are 1.6438868 -and 1.6439344, differing

by .0000476. Clearly, we seem to-have established a.valuable Thd-'

associative law does not work for computer arithmetic; thtrefore, the oyderin-
.

which computer operations-are performed has a definite effect on the ac acy

of the result.

In particular, it should be.noted from the above examples that-addi

terms in order.of increasing magnitude-is diStinctly preferable the rev se-
.

order. By adding in the preferred way the cumulative, effect of a ge number

of small terms has 'a better chance to make itself feat.%

4.

9

>'<

1

280

2
1

4.

6-6 Some Pitfalls

For ournext example, let 448 consider the problem of sewing two

taneous linear equations, .e., a system'
e

allx + 12Y bl

a21x a22Y --4'162 /

6-6

In your earlier mathematics courses you have solved ma such systems of

equations, and'you have learned-several metAds of doing so. Hopefully, you

have also developed some shortcuts'and tricks which simplify this job. These

procedures depend on an examination of the system, some insight, and sometimes

on a hunch.

40*
For a digital -computer-oriente4 algorithm it is often possible, and even

interesting, to attempt-to develova super-algorithm to examine the system,

and, depending on the results of this examination,to choose lane of several

available sub-algorithms for the actual solution of the system. When you have,

finished studying this section,-you may want to attempt the construction of
n

such an algorithm. For the time being, we shall select a fixed method of

solution in order to see what can go wrong.

Our method will consist of elimination of the variable x from the second

equation brdividing all coefficients in the first equation by all, multiply-

ing the resulting coefficients°by a21, and then subtractitig the first equa-

tion from the second.

Let us first illustrate the algorithm by an exampl.° To solve

T
(1)*' 2x + 3y . 12

(2) - 11

we divide all coefficientsof equation (1) by 2, obtaining

(3) + =6.

Next we -multiply all coefficients of equation (3) by 5 and subtract 4

.

/.7
results from the cOrrespc)nding coefficients of- equation (2), t4hicliyields,

,

:*;4, I/ 4TIn-customaiy mathematiCal usage; when.no cOnfusion is likelY to Xesuit.,
'".coMMA bet*en,dbable subscripts and/or the m4Itiplicatioh symbol between;

mar be emitted: From here on when tbap' symbols 'obscure a1
pattern we Wish to emphasize, we,will sometimes omirthe,symbols..

6-6

(4) - 29y = -19. ,

Dividing both sides of this equation by -2 , we get

(5) Y =

We now have a new system of equations, (1) and (5), which is equiVaNnt to

the original system. Since the second component of the desired solution is

the right-hand member of equation (5), we 3an stibstitute.this value in o.

equation ,(1) to- get the first component, .3. Thus, :the required sol icin is

4the ordered pair (3,2).

1

We now wish to describe this algorithm as a flow chart. In order to take

care of contingencies we must check prior to each division that the, quotient_

is not zero. diere is the, flow chart for you to-study.

4..

Se

au, a12,.

822, b2

822 4- 822 - 821

4- b
2

- a
1

(a
2

Y
b2

822.

1
'x 4-

811
(b

1
- a,2y)

X? y

Figure 6-3.!. Solving two linear equations
(

"ZERO
EitISION"

y

282

2 S

"

gb.

6-6

Tt would probably be helpful to you to hand-step through this flow chart

with our earlier example, or one of yOlir own, so as to convince you that this

flow chart is indeed a description of the previously discussed algorithm, and,

-4, moreover, that the process does indeed produce the correct solution.

Now for a troublesome example. Consider the system

.0001x + y = 1

x +y = 2. .

Let us first apply our algorithm using exact arithmetic to get the exact

solution. a
22 is to be replaced byr 1 - 10000, i.e., -9999, and b

2becomes 2 - 10000, i.e., '-9998. Thus, the second equation becomes

-9999y = -9998 ft

and the solution for y is "2298 By substitution we find the solution for
9999',10000x to bo . it is an easy matter to substitute these values into both9999

equations and thus to verify the correctness of the.scaution.

Of course, neither of these values has-.an Fact finite decimal representa-

tion, but, choppedjto 10* significant digits, le solutions for x and y
are 1.000100010 and .9998999899, fespectively.

Now let us execdte the algorithm again, but using 3-digit arithmetic. Me

again obtain the last equation abovebut we must chop to 3 digits, which
. yields

-9990y = -9990

so that the solution for 'y is .00. Substituting this into the first

equation, we get zero as the solution for x, whiCh is a very, bad result-

indeed.

4

What could have caused thispextrekely large error? To get at the trouble,

'let us repeat the execution of the algorithmr6nce more, but with the order of

the equations inter9hanged. In other worts, let us solve the system*

x + y
;

= 2
. 0'

.0001x + y = 1 .

Here we' are to replae, a22 by 1 - .0001x which chopped_to 3 digits
is .999. Then we replace b2 by 1 - .0002, which 'chopped to 3 digith,ifi

also .999. So the solution for y is again 1.00, but.su stitution of this

value into the'first e4Uatfon,sivespUir- 1.00' ss theyBoluti for x, which
is not abad result.

t

"

6-6

You are probably wondering why the order of the equations has suchimpor-

tance. The real problem is not the order of the equations,'but the.division

by all in the algorithmkhich we have used. You will recall that thkerror
aliv

in the division process was related to the magnitude of the divisor. :In solving

our system,we had a choice of dividing by any one of the four coefficients which

appear in the left-hand sides of the equations. We chose,. with malice afore-

tholight, to divide by the smallest coefficient we could find, thus maximizing

the error. When the equations were interchanged, we divided by as large a

coefficient as could be found,,Rbich gave us a-goOd result.
.;

-\
In the next chapter 3)ou shli find a more complete treatment of the impor-

tant problem of solving simultaneous linear equations. Just to whet your

appetite, you might be interested ikknowing that there are many important

and very real problems, such as the firing of guided missiles or the design of

atomic reactors, which requite theaccurate solution of systems of thousands

of simultaneous linear equations. So the problem is worth thinking about. .;

7
Lest you think that our explanation above has given you sufficient inOght

. .

into the numerical aspects of theproblemye shall present another example of

'Idiot can 6.wrong-
t

Consider the system

X '4- Idi98 4

-,--,
,

'", .99x,+ .98y;= 1.97,
.:..; ..

..,
..7

. ..

Using,.,exact arithmetic, we get the solution x,= 1.,, y = 1, Check it

Now if we change just one of the numbers inyolved in the problem slightly, say
r..-

1.97 to 1.96, we solve the systt.,, ',.

... -
'

' e:._,
!x, -f:1,-.'.-94.1y

:,. - r.
-

,...,

we get the solution x = 2, y = ---A,, = - .t to 3 significant digits.
. 9 .e . .

Thus,.a very minor Change in ,just one coef isient caused -bn'extreme change in

the solution.
.

..,44: . ---; , :',,..;
..

. ,4
There is ,a fairly simple:explanatiom; of course,4whichlUVolves trying to

, .-

draw the graphs of thethree.equations invoinvolved tl*two systemw. We have
..., .4

in
...;

'not drawn these for you, as it would be v14 4.4fficult to distinguish the three
..; :.

lines with,the:Aked 'eye. Trir t&drawltlie,grephs! You will ,see that all three
',.

are almost parallel. Since they are not parallell,however"the two,pairs of-

lines have twin, distinct points
:

of inters'aiion,'and you shciuld be able to-see

.
why a, very small change in 4 Oefficient icaUses the result which, we have

I. ,t ;"
284',.., 1,:'/

.. 2;tr.i

6-6

observed. Try to construct similar examples of your own!. Before leaving this
subject we feel compelled to point out to you that when a real problem of.this
sort occurs, the coefficients in the system of equations to.be solved are

1
usually found by prior computations,.which themselves are subject to error.
This merely points out again why numerical analysis is such an important ad-

,

junct of computational procedure. It also should increase your respect for
astronauts, as well as for the people who are responsible for the computational
p1oblems of a rocket laudch.

a

41,

4

t

a
6 -7

6-7 'More Pitfalls

Many numerical difficulties occur in computation as a result of using 'the

number zero as-a decision criterion. We have told you earlier that all real

numbers are equally good. Nevertheless, some numbers are more important than

others. YoU probably have observed in your earlier studies'in mathematics

that the number zro occurs more frequently than.any Other.

In abstract mathematics you may have realized that there does not exist

a smallest positive number. To prove this, it is'sufficient to observe that

if anyone claimed to know such a number, one-half of that number would also be

positive, but smaller. In other words, we can find positive nueers arbitrarily

close to' zero.

In computer mathematics, this i8 not the case. For each specific computer

.system there exists a specific smallest-positive number. 'Therefore, Many mathe-

matical ideas, theorems, and algorithms, whose"abstract justification depends

on being able to find arbitrarily shall poSitive n4mbers, Must hg,dified for

computer use. White a complete treatment of. this difference is fEiP beyond the

scope of this book, we can illustrate some consequences of the differences by

means of some fairly simple examples..

You have already considered some of the logical problems involved in

devising an algorithm for the solution of, an equation of the form ax
2
+bx+ c 0,

given the coefficients , b, and c. The logical problems included checking

to see if a was zer ,.examining the discriminant b
2°

- 4ac to see if it was'

negative, zero.or positive, etc% So you see that the number zero pliys an

important part.in this logical analysis; If a
.

is zero, the equation iellnpt

quadratic, and the efo
1 .

1

re clarinet have exactly two roots: °If a
,

0, the.equa-
.

tion is quadratic nd,has exactly two roots. .Suppose further.that the discrim-

inant is positive, so that the two roots are'Teal. You then know how to find
. ,

the.roots by the quadratic -formula.

Suppose we wish

the criteria above.

however. Therefore,

solution., In oiher

to salve the e4uation'.x
2

- 6x + 4 =

The exact roots are .3 + 15 . These

no number representable digitally in

ords, if we asked the.question:r,Is

0, whic4 satisfies

roots Are irrational,

a computer can he'h

x
2

- 6x + 4 =

-_then the answer as given by a,computer Mould always be NO. We can, however,

determine 'that thelvalue,of the left side,othe equation is -.0271 when x

5fA nd. is :190. wa ,, i'' 5.24.,"Therelfore,'44rOS a OOt between(f
, , 1

,

5..2,3 and 5.24, and we could choose one of ihelwas an apPrboxipatin 6 the' 4and
, o

. Al % ,a

_root. We could also compute closer eqimatiOns. The important thiltgte
<- t

,bear in mind is not to ask forjan exact solution; but for hn approximation with
'.

.

, .

1

.

a specified approximation criterion. Such a criterion might be the valu of°'
the left side of the equation. Ur choice of,such a value is not ea-sy", however,
and requires considerable' analyse for proper determination.

As another example, co nsider the equation.,

x + 100Q0x - 1 = 0'.

6-7

.
T The discriminant* b2 - 1+ = 100000004; arid -ac = 10000.60020,

.Corre ctito digits. We can compute the roots as -10000.0001 and .0001.
Substituting ekither of thest values, the .left side of the equation becOmes
10-8). which is acceptable. Supposing we can only use 8-digit arithmetic,
however, then 2 - hac = b, numerical , and w,get.;,,-1000 and 0 as
roots. Wale the irittecuracy thus intro ced into'the- computations is relative-..
ly small, it is aesthetically disturbing .to gets zero as a result, while the
equation does in fact"have a positive root. 'This difficulty can be avoided by,
remembering-that if a 0, the product o the rroots Of the equation is b

We can therefore get the positive root; accurately even with 4-digit arittnetic
by ditriding by -10000. So, particularly when b2 is much larger'than
I 4ac I we can enhance the "accuraeN) of computation of the toot, near zero'by.
dividing -_- by th,e numerically large' root:. This avoids getting zero as the
result of subtaaft the nearly equal quantities b) anti/42 - 4ac."

ti

1-

4,)

28'2 (3 /.

1
4 3

.

Up
eq 5

*4

7.

it

- ,

, .--

. '64._,.

1
6-8 Approximating .itinotions

You have had some experience in using mathematical tables in solving

problems. Specifically, you probably have, used tables of logarithms, ;trig°,

nometric functions, and logaritp4 pf trig-li onoMetric functions. You mayl,not
, .

have givenuch thought to the origin of these tables, to the methods by which

they we created. The mathpmatical theories used in this prpcess areltoc.
, i

'involved to be detailed hefe. On the other hand, the storage capacities of -
..;

digital computers are limited, and preclude the Storage of all' the tables which
.

Users might need for the ,solution of their variegated prIblems. If.you have '

not already done so, you might enjoy looking at the Handbbak of Mathematical

Tabip published by the Chemical Rubber Company, jut to get an idea of thg

multi\icity of tables in existence. There are.many more books of tablasan

existence..1 clearly we could not begin to store all of this information in a

computer. Sb to do the necessary' calculations we incorporate subroutines into

programs which calculate-finctionalvalues. In hand calculations.these values
.

are usually obtained by looking into boots of tables.. Me will conclude this
. .. _

-.........

chapter with a brief discussion of a few methods of computing values of some
0

N of,the most common such fufictions. These are usually-included as library,
. .

'functions -with most cothpatihg systems. . .

1.

.

. ., . 41

methods f computing square roots. 16e-most common of these you met in ,,r>.

-The moat c

p

common function is the square root function. There are'sevel
, . ..,

't

...

s

Chapter 5. Suppose we'use the Newton Met odflow chart of Figure 5-7 repeated'

, here for your convenience as.Figur4 , toccompute the sqUare root_of 2.

We present.the successive results in tabular forin.'

,

Table 71

NeWton's Square Root Metaod"

g

1

1.5

.1.4166

1.4142

aig.

2/1 = 2

2/1.5 = .l.3333

2/1.4166 = 1.4118

2/1.4142 = 1.4142

'h

-32:-(1+2) = 1.5,

1,
t1.51-1.3533) = 1.4166

-17(:44166+1.4118) ',I-. 1.4142

1 if:

(1.41.1:4.4142).'= 1.4142

- gi

=5
I

/4Y0834

.00q4

.0009,

. 288

23J

t-,

-

a"

ti

4 Q.

4

I

Figure 6-4. Newton square root method

e -

The computatiorCshownin Table 6-1.is_terminated after four iterations

because further iteration would riot change the 'silt. This.is not necessarily

a good criterion however, sinde it may noivalwvs be possible to achieye and,
, ,

. moreover, does 4ot necessarily give the desired result,. Note that-

0..414)2 = 1.999396, but it actually is the best 4-digit approXimationsince

(1;415)2 i 2.00222,,,

I iv
Suppose We desired a 3-digWapproximation to ../.7(70 and sdathow.we

arrived at .840 as an approxim4e' result. Nbte that, using 3-digit arith-

metic,

.709 + -.840 = .844
,

2(.840 4. .844) .=.211.68)
?

Thus, although .842 i a better 3-digit approximation to the
.

"averaging" algorithm descri ed will yield" .84o if three-Agit arithmetic

is used. The moral is that t'is not desirable to require accuracy to the

Word-length of the machine. The algorithm should be terminated whenever two'

.
consecutiveapproximations ffer by less than a spedified maximum allowable

error, which should be sign ficantly greater than the sialingt positive number
. . .

.

. representable in,the madhin

n, I

. 6-8

i .4

Finally, we shall Ipiefly look at computation of the sine function. When
. ,

You first learted about this function you were tad that values of this function
-.

typically are irrational numbers, which could be computed to any desired degree

.... of accuracy by methods developed in calculus. Since yOu probably hate not yet

atudied.munh of calculus, it is not possible to go into these methods at this_

.pqint. We can, however; show yoU examples of.'howtielges of the sine function
/
can, be computed.I 0

1 .4*.,
i. .

i , ,) -, -
1

We, are Considering the function sin x,, where x is a real numbere which

/ you can think of as the radian measure'of an angle \if you so desire. It is
7,

p4oved
-.4 t .

l-Jek calculus that the sum of "sufficiently many" terms of the series.
4

('
,

. 1. .): x5 x7
... x -- ..i. .-- ,... .- -I. ...

e , 4, . 3! 5: 71
'. -

is a number'close 'to sin x, and that the difference,bet.ieen sin x and the-
..

',

aobvementioned sum becomes numerically smaller as more anotmore terms are taken.

If We look a the series from a computational view, the;aalculations are,

not very difficult. Let's look at an easy eXample, say the calCulition of
.

sfn (:3).

The first term is, of,course, the easiest.

i.' .

To,get,the
.

numerator of thecsecond term, we multiply. .3 by the *value

'2 t .

of x , in this case .09. To get'the-denominator, we multiply thp-denomin-
/

. ator of the previOus term, 1; hy'2- 3..
i

., ;

To get the numerator of the third term, mfi'multiAthe numerator of. the

previous term againby .09: and to get tile denOminator, we multiply the pre-

vials denominator by 4.. 5.

/
.

.,

. This seems like
.

a
,
fairly Simple procedure, so let us compute the'fiist few'

,

terms. To simplify thirigs, let us name the terms es.compofients of a vector,
. , ,

. .
.

.

YIP Y2' '.

Y x =

2
(-4)9) (3)

31 2'3

x? (-:09) (-.°045) ;000(4025X45)
'Y3 74775-.' '2

, ._x2 (...09)'(.00102025)
....-1000000043397Y4 = 7; = Y3 ° 42

I.

,290

2

447..

S.
"6-8

Clearly, subsequent terms will be numerically much smaller than, thdse

which we have.computed. If we stop at this point and compute the sum of these
four terms, we obtain .2955202066 as an approximation to siri(.3). Published
5-lace tabled give .29552, so that we have perfect agreement to five digits.

-Now let's try to compute,

Y2

Y
3 75 2

-x
2

(-25)

(15)-x2

sin 5 correct to 5 digits.

:

yi = x = 5.

2
-x -255y - 20.04166661

0
(-20.8333333) 9 -26.041666620

-.°(260416'666)
Y4 b77 Y3 -- 42 - 15.5009920

-x
2

(-25) (-15.5009920
Y5 = T.D. Y4 m W2

5.3822889

2
-x

Y64= 10411

Y7 =

-x2

(-25) ' (5.3822889)
-1.2232475Y5 110

Y

.:
(-25) ' 0-3232475)

'.196033312413 6 156

-x
2

r(-25) (.1960333.
Y8 = 17E5 '40

-x
2 -

(-25) (-.0233373)Y8Y9 16717 272

-x.
2

(-25) (.0021450)
10 ITFI. Yg 342

Y12

a

Note that a

accuracy

-x
2,

2 0.21 Y10

-x
2

2 2'23 Yll

.

.0233373

.003.450

.6001568

(-25) (-.0001568) .

420
_ .00looli93_

(-25) (.0000093)
- -.0000005

, 5o6

j I

4, -

6

larger number of terms,was necessary toachieve the required

for this larger value of x. We have arbitrarily kept 7 digits to'

the right of the decimal point, which might-not always be possible with a

digital computer.

Adding our

sin 5; and we

digits.

1

12 terms, we obtain

1,6

.§5.8924 as,ig appro444 ion to

can feel fairly confident dt-the accuracy of ti;le first ,five
.

gr,

ol

4

r

4 6-8
Ri

L

We give in Figure,6-5 a flow chart for computing thetva1ue of sin(x).

r

9

. 1 TRH > ACCUR

J

F

, 4

2ix(21+1)>CIRK'

STIOC.4-..STNX + TRM

",

. .

t. 5'

SINX

Figure 6-5. Algorithm to compute .sin(x)
-,

2

.Sote that we do not store the individual terms of the series. Instead,
R.

..swe sum'them as they are computed, keeping a copy only of the very last term

(TRK). In' this way it is possible to avoid the use ,of suiscripts.

We have seen in the preceding examples that when lx1 is large the
,

computation in Figure 6-5 is cupbersome and subjeat to many numerical

.%4 inaccuracies. Therefoke it is.desirable to convert the problem to cal-
.

culittion of an approximation for small valpes of x by using the reduction
tI -'

,,, f ' ,

.,,. :formulas .foe trigonohetrie functiont.which you have.studied'in in earlier
,r. .

:course. filtcordingly you will be asked in. 47 below to draw 011'

.

, a

si modification, of Figure .6-5 incorporating this conversion., .

4

..1.

V/

1,
,,

0 29
2"

. $

Exercises 6-8

)4.
,l. What weuld be the result of applying the square r510 algorithm of

Figure 6-4 if the input variable a has a value 0 ? .

____ ..2. . Whit would be the result of applying the square root'algorithm of . 1

l'

Figure 6-4 if the input, a), is less than 0 ?

e - 1.

%

The sq4are'root algorithm, Figure 6-4, uses g = 1 as an initial approx-
,imaton no Matter what value a has.

(4- What xther initial approximations might be tried?

4.

(b) Suggest what advantages or'disadvantages such approximations might,'
have.

jiodifythe algorithm which computes the sin(x), Figure.6-5, -so that'the
value of x is reduced to one between.

2
=1-1

2
and , using the relation

sinx = (-1)n.sin(x - nn), for any integer, n.

.

.4

,
O

"

"'

4.

293

'PS

1

,

2t,

Cdapter 7

'-55)ME MATHEMATICAL APPLICATIONS

A

,
r

4by7..1 Root of an EquiVdn-by Bisecttod 11
" ""'t . `'

.,-

Locating a Root t& Graphing
,

f

O

f.

. ,.
The problem of finding the roots of'equationg is a very common one.

. ,

Very early in your stuty Of algebra you learned howto sollie a linear equation
.,- s,

and a; re 'hit later yOn. learned hhw to solve a 4Tiadratic equation. Also,
'7,,,-

the solttlonef systems' of linear equations is familiar to you. Irideed, we

will .study probleM^i4..Sections.7-4 dila 7-5. But suppdse we have an equa-
,tioh aof higher degree than a quadratic or an equation that involves some func-

tions like sin x, cos x; or tan x besides the ordinary algebraic functions
rof x. For example; we might want the roots Of the equation

.
,

or the equation

3x - 7x - 2 =.0

+ 7X3 -x + 3 = o.f

Or we might ware to solve the; equation

iw

X+ QY17C = 0

ox: the equation

.
x.= t;en x.

There are many methods which have been propose& fbr finding the roots of

such equations. Perhaps one of the simplest is a graphical method, If the

equation is written in thq form f(x) = 0, then we have only ta calculate

f(x) for a suitable set of values o'fx and, plot the.graPh of y = f(x).

Wheneyer this graph crosses the x -axis there will be a root of the equation.

Of course, we can get only:an approxiMate result by such a graphical procedure

because of the limitations on our ability to draw a graph very accurately. We

also may havediffiCulty in finding the right domain of%the values of x to
udeinIplotting the,grEi.0: I

t.

,

1In customary mathematical usage, when no confusion is likely to result; the '

comma between double sgh scripts and/or the multiplication symbol between mul-
tiplicands may be omitted. Henceforth_in,this work when the visual distraction

'

of these syMbolsCbscures a pattern w wish to emphasize, we shall omit the
symbols. Also, parentheses around function arguments are sometimes omitted in
the text tut never in flow chartk; '

295
9 t.. -

. .

4 -.1

Suppose that we want, to find approximately the roots of the equation

3x3 - 7x - 2 =

Edraw thegraph of y = 3x3 - 7x - 2. -To

table of values.

'this we first calculate a small

x [3 -2 -1 : 43

_

2 '3

y '42 212' 2 -R % -60, 8 58

it,

The graph is sho4n in'Figure 7-1.

Figure 7-1: GraPhtoe '3(= 3x3 - 7x - 2

O

X

.%;

The roots are seen to be near -1, between -1 and 0 and between I and 2.

..

An alternative method is to write the equation to be solved in the form

f
1
(x) = f

2
(X) .and'plot

t.

the graphs of .y = f
1
ix) ,and y = f

2
(50% The x-coor-

.ainates of the points where these graphs interdect t)i.11 give us the roots'of

the
, . ?

,

eqUation: ,.-
...

..

For eXamp1e, suppose we.want to find approximately the roots o' the.eva-

tion x = cot x. We draw the graphs of y = x and y = cot x. The x-coordin-7)

ates of the points where,these curves intersect give us theroots of the

evatipn%

96k

2J:3
*I

I, I

;FigureFigure 7-2. Graphs of y = x and y = cot x. :
. .

7-1

We see that there are trifinitel!y many roots, the smallest ones being near

The other roots lieneazio + ky, k

- .

.

Exercise 7-1 Set t-A

. Y. By plottingthe graph of y ;--7f(1),
/

where f(x) dend'tes the lefthand side
in, each of the following five equations, find approximately the roots of

- {

theefollowing equatioris. F.
.

(a) *x3 -',2X : ;= 0 .(d) x3 - x - 1 = 0 ..

..) , 4' 2
.

(b) x + 3x - 2x L 4 =.0 (d) '''5:2.-.. 3x - 4 sin2x = ,0

(c)

.

3 x ' - 2x3 + 7x - 4 = Cl
1

?

, 1
..,. ,

..

2. By plotting the graphs of y = fl(x) .and' y = f2(x) for suitably chosen

f
1
(x) and f

2
(x) find approximately the roots of thefollowing equations.

.

. ,

. 6 .
.-

e ,
.

'
.

(a) I: =
t

tan x ,

1

, lb) oi + in X °= 0
t

.
..

(c) 5 - x = 5 din x

297.

7-1

IP
The Method of Successive Bisection 4

4ither of these graphical methods will give us an approximation to a

root of the equation. Once we have an idea of where the root lie6 we can im-

prove the accuracy of the root.

One OT t4emost powerful methods but often pot the most ekficient method
.

for finding a root of an equation in a given interval is the method of succes-

sive bisection. TZle.method is designed for use wheri the function is known in

advance to be continuous (,i.e., no breaks-in the graph) and to have just one

root in the given interval. We consider it incidental that the method Will

..alsci produce one of the roots in ,the case that tie function has an odd ndmber,

of roots in the interval.

method is inapplicable.
.1,

If the number of roots in the.interval is even, the

Suppose,that we seek a root Esf the equation f(x) = 0 where f(x) is a

function of. x. Suppor}e-1Kther.that. f(x3) < 0 and f(x2) >,0, i.e., the

graph of Sr = f(x) is below the x--axis at x= x
1

and ab67e the-x-axis at

x = x2. Th4v situation-is illustrated in Figure 7-3. Now if the graph of

y = C(x) has no gaps or jumps between x, xi, and x = ;then it must

cross thex-axis between x
1

and x
2

and, hence, there must be a root oC

". f(x) = 0 between xi and x2
.

V
I

Figure 7-3.-.Graph Of some f(x) with a root
between x

1
and x

2

9 29e

v

1

:

We *ow bisect. the interval .(x3,x
2

)

Ithat'we have '

Ott
s.

,.

and denote the midpoiht by 'xm so

4

7-1

-xm = (x. +,x7.2)/2

.

If f(x..) = 0, then we have a root. "Never, if i(xm) > 0, asin Figure 7 -3,

then there is a root between and ,So to prepare for the next step, we

assign the value of Icim to the variable ""x2. Thus, again We can denote the

interval in which the roof'lies by (xl,x2), but the length Of our new,interval

is half that of the original interval, as'shown in Figure 7'.3a.

e

4-

X2

Figure 7-3a. New interval after one bisection

' t/

We calculate the value of the function'at the midpoint xm. of theliew
inteyvai. This time f(xmlo< 0, as shown-itiFigure 7-3A, andtherefore the

root is between xm" and x2. Again we have isolatqd.the root in an interval
half the length of 'the, previous interval. If we now assign the value of 7.11

to the variable x
1,

we can again denote the current inteAtal codtaiding the

rooi,by (x1,x2).
7

- .

We m4 repeat the bisecpiod proqess fot the -nest interval in which we 'know

the root lies. kreteating this bisection process we can come as close to the:,
root asNiie please for at-each step we halve the length of the intervals in 1#2,4

the root lies. Thus, 10 steps will reduce the length of the interval by a

factor of 2
10

or roughly 1000 while 20 steps will reduce it by afactor,,
,of 220" ox roughly' 1000000. Thus, the method is seen to be moderately

. :
,

"7-

\
7-1 ,1

_Example:

N.

Now let us consider again the equation

3x3 - 7x - 2 = O.

The avresponding graph is drawn in Figure 7-1. If we let fjx) = 3x3 .-

, ,,
_

42, we see rthar-

- t(1) < 0 and f(2) > 0

t
i "--"\

and so we iciisor t Ye is a root of the equation between 1 and 2.

,X:.-. , .,1 ,

. ,

4FenOw":bi this interval. The ,midpoint is x1,1= 3/2. it easily

, . 1 ,,%/, 4-'

' find by s4Stitu on.
0

.

1°;::)-,-
.°

4..

---:,...., ,i....
) = -19/8. so f(2) < O.

4%.;; \

Thus'; the root lies in the interval (3/2).2)- The midpoint of 'Ulla inter-

...
val is = .7/4. . But ;

; Ll

'f(r%./) 117/64 so - -f(.4) > 4.

}ence; the rO:t lies:in the interval (3/247/4).
-

We'can continue this process as many times as we wish, each time

finding in
r
whith interval the rootlLies: Note that the length_ of the

'interlal is halvecrateach step.

Exereibes 7-1 Set B

Use the method-of b1section to,find
approXimate values of the indicated

roots of the following eqbationg. In each paQe_start with the indicated
-

.

.

, _interval which is known to contain a root anokuse the indicated number of

bisection steps. '

1. x3 - 2x - 5 =V; (2,3) 4 steps

2. x
4

+ 3x
2
- 2x - 4= 0. (-1,0) 3 steps

fk"

tan x,
.

(3,5) 4 Nps 1

Compare'your results withthe results l'cundp%phicallyin Exercises 7-1A.
4

r
3b0

3.1 0.

A

7-1

Now we will develop a flow dEart base the successive bisection method

for approximating a root (or "zero") of a giV,e,funciion F in a given inter-
-,.

val. In pasiing to'the flow chart. stage-we wiP: use xl, x2 and xM instead
of)pi, x2 and

,cµ k,

A

The basic operation of the bisection process is the replacement of the .

interval (xl,x2) in which a root of FN is knoWu`,to lie, by a subinterval of

half its length in which the root is known to we assume that the.

initill values-of xl and x2 are such that F(xl), and F(x2) have oppositg

signs, then the partial lowehart of Figure '1-4 describes the steps bf this

operation.

_

6

+x2)/2

,
. 1

11 10,
. -0'.

values of,F(X1) x F(XM)) 1 ROQ1,4--X(4.

< 0 ''. >: 0 ...'441 A 1

f

IROOT. 11 14

)a 4.= xM

Figuie 7-4. Partial-Aflow chart of bisection proCedure

3A,

In box 6 the midpoint' XM is calculated. In box 11we see the easiest way of

deciding whether F(il) and ,F(XM) have le same or opposite signs. They

dave the same orlopposite signs according to whether their product is positive

.or negative. ,If their product is zero,,,then F(XM),,,,mmt,be_zero asre.are
. -r

ti

Osuming that F(XI) is already known be different frahlZero. '

A each siage,-befope we decide to replace the inteYvaL ('10.,X'2) by an

interval half as long, we need to check the.length of the'interval, i.e., the
.

'absolute value of -the difference, XI,- It it is sufficiettiy small, (say

Smaller than a'given, value; we accept the value XM at the midpoint of

the interval as the root oil the equation. :Otherwise, we repeat the operations

of thekflow chart of Figure 7-4.

-10c "

4

o

.

.1

. '

7:11'
C

We are now ready to draw a complete flow chart for finding a root by the

bisection method. It is seen in Figure 7-5. We assume, the equktion is given

in the form F(X) = 0'. We are -given two numbers, the ,initial values of Xl
ip

and X2 between which a, root is supposed to lie. We alio assumethat a tol-,
.

erance c is given and that we. are tupposed,to.calculate the toot with an
. .,

error less than E. More precipely.the true root is to lie within an interval
-4-

of length e centered-,,on the ealculated-root. Values of Xl, X2' and .e are
.46_. ,

;read in box 1 of Figure 7-5.

a, .x2,

2

.Y1 4-F(a)

>_0 values of Y1 x VX2)

4 <0
"MethOd

inapplicable"

t'

*XM 4 (xi. + x2)/2

9

(Pa

8

FOOT 4-- Y2

.10

11

Oralues-of.YlX F(XM))

.

X2 4- XM

ROOT 4 XM

> o
141

X1 4 XM

4"
Figure 7-5. Bisect flow chart

4..

T12

ROOT

S

O.

In box"2the valueof F(Xl) is assigned to an auxiliary variable Yl.'

This ib based on the principal that if you are going,to Use a particular value

of an expression several times, you assign that value to some variable,to avoid

repeating the identicil computation. The fragment of Figure 7-4(nis'repedted i,

boxes 6, 10, 11, 12, 13 and 14 of F 7 -5. Box 3 is a test to determine

whether the initial values of F(X1) and F(X2) have tiile same or opposite

signs. If they have opposite signs, then Yl :F(1(1) is.negaive,-so we go

to bpx 6, and start the bisection process. If .F(X1) and F(X2) have opposite

Signs, then Yi.F(X2) 'is_negative and the ;method isihappliable. 'Ibi.is

10.1.cated in box 4. If Yl F(X2) = 0, then either Xl or X2 is; already a

toot and. the' purpose 9r boxes 5, 7 and !B isto find out which. Note that if

both Xl and X2 are-roots, fie will not discover this but-will be sat1sffed

with the one root Xl. , .

\:,.0

One little trick remains to be explained. We note that only one assignment.'

-,hashas been made the variable Yl. so that its value never changes- its value
,v_ .

ie alwayss F at the initial value, of Xl. We want, in box 11, to determine

whether F(Y1) and F(XM) ,have same or different signs. Only if the- . .

. .

signs are the same do we assign XM to Xl. it then the new F(X1) and the

old one will have the same sign: lin other words, the sign of F(Xl) never

changes. The test of ign in box 11 can thus ae well be made using the initial.

value of F(X1) as with the latest value.
.

.
.

.
.Fatercises 7-1 Set C

A,

..
, ., v ,
"..9 .

Step through the flow .chart of Figure wi the indicated functiond,

the indicated intervals and the,indidated Values of 1e. Determine whether

there are an odd number'of roots in'the interval and, it.therearq, determine
4

4

AhevalUe of ROOT. Sliderule accuracy is adequateTableS may be used, in
__'ProbleMS'2 and 3. '

.___..- :....

N
.... .

1.. , x3 -X- 1 = 0 (0,2],,e = 0:1
% ,

''.. '

.

2. x + lnx = 0 [.1,1]. e-= 0.15 /
. 4..

t:

3. 3 -'x = 5 sinx [0,2]. e = 0.4

4. 3
x. -*. 3x - 2 = 0 f0,21 e = 0.1

x3 - 2.X = 13x -

'

10 = -10,4] 'e 0.1

A .

..,
b The follOwing example should be tused,as a guldef

,
. : '" , .

A
. 2

303

3 0 L.) ,

4

4

7-1

Problem:

Soltition:

.41

3x
4

- 2x
3

-I- 7x -

An odd number of roots.

45 . .5

For e = 0.4 the root is

=0 (0,1] e = 0.4

.625. f(x) = 2x3 + 7x - 4 =-0

Step xi
Sign of
f(x))

=

x2

Sign of
f(x2) xm

Sign of
f(xm) Ixi-x21

?.

, 2

0 .

0.5

0.5
'

4
- f

-

-

1

1

0.75

+

+

+

0.5

0.0a5

:, -

+

+

1

0,5

0.25

Bisection as a Procedure

After you have traced through the defial**Biaect in Figure 7-5, Ica

,made store it "is in good working order, we are rcidy to proceed With converting=

it into a procedure. Bisect always operatekon a function F.
h.

We will let, one of the parameters-be a dummy function,naie. In,this way

the protedure could solve for the roots of finctions having a Ariety of actual'

names. If'we don't adira dummy function name (Ft) to the parameter list, we

could not search for a root of 'GM or R(X), for example, acid we would be 0!

unable to have one main flow chart call on the Procedure and rfer to more.than

one function. Clearly, a function name should be an element o the'par ameter

list' when. we convert-Rigect.to. a procedure. , A
4

Since Figure 7-5 has an alternate exit, it also seems natural to include,

a label (bOX number' in the parameter list. Calliag the bisect procedure ZERO,

fe show the funnel as it would replad6 the START and box 1 of Figure 7-5.

ZERO(F,L,X1,X2,e,ROOT)

Here the F ,is(a placeholder for a function reference that will be suppliectby

the main flow chart. The L providds a location for a statement label as des-

cribedin Section 5-5

Figure 7-6,shOws thd complete flow chart for our new proceddre ZERO.

304

'ti

4

4

zERo(F,L;ia;x2 e,

2

Yl F(xl.

3
> 0

values of Yl X F(X2)

1 /

4< 0

.r 6

xm (22-1- x2)/2
. . .

-X2
T

9
F

11

.0

T
Y1 =

7

ROOT 4- xi

values of Yl X 101102-12-

O

3.

ROOT 4- X2

lO

ROOT

< 0
i

> 0

13 I , 14.

X 2 4- 2 4 .
I Xl. 4-- Dil

..

,

p
- . -

Figure 7-6. ZERO: bisection procednie

/

We.notice some fancy new ornamentation in the funnel of Figure/? -6. To
, .

understand it, recall krom,gection,5-5 that variables in, the funnel of a_Prb-
%

ceddre'can-be thought of as either slips of.paper or WIndoubiltes coming into
.

the hopper of the brick chamber. Inthib procedure some variables are treated
;, .

in one of these ways and some,in the other.

'
.

4

P
305 .

ok

7-1

Let us concentrate our atteftion on the variables 11 and X2 in the

funnel. X1 And X2 start as the ends of our original interval. Recall tiiat

our procedure has as its only purpose the locating of a root. The procedure

should not make any capricious alterations in the values of the main glow chart

variables-- Looking atboxes 13 and 14 we see that assighment is made to 'Xl

and. X2. Therefore, if the ,.values of X1 and X2 are brought to the subroutine

in theirWindoWboxes,.these boxes will be returned to the main flow chart with

changed valdes. This will throw a monkey wrench into the mein flow chart if

origin al values of these variables are needed later on, We insist, therefore,

that the initial values to be assigned,to X1 'and X2 should be brought to

the hopper on slips of paper. To remind ourselves of this fact we have adopted

the convention of underlining these ligriables with wavy lines.

We are indifferttnt as ta which of the two treatments to use on the variable

as its value is unchanged in the course of, the procedure. this,is reflected

in our not giving e any-special marking. [Our preference is for having its
,,-

value'transndtted by assignment.] ;

Now; finally we look at the dummy "output" variable, ROOT. Remember that

the sole purpose of this variable is to hold the infprmation,going back to.the

main flow_chart. Clearly, a receptacle must be provided to ,carry this informa-

tion back. The window box' belonging to the main flow chart variable will there -

fore come through the hopper and be relabeled as ROOT. We have enclosed this

variable in a rectangle to keep track of this fact.
. 3.

We will adhere to these rectangles and wavy line conirentions when we wish

to emphasize the Wl'-ay in werch the variables must be treated. Th.l.sphould beta

help o you inr.writing your procedural language:programs. Withou this conven-

tion you might be forced to search through the reference flow Chart if you have

forgotten what the variables are

Before leaving thia subject we want to x6int out that the danger of mis-

treating variables ,X1 and X2 could have been avoided in another way. The "

top 'of', the flow chart of Figure 7-6 could have, been altered to use X1 and X2

as auxit3 7 variables as shown in Figure 7-7. Handled this way, it is inmater-

ial how A and B come into the hopper.

e. 0

3 Ot;
yS

s

ZERd(F,L,A,B; e,

1

,X1. 4.- A

X2 4-B

on to box 2

"5 '
Figure 7-7. AnothalVivtection plan

O

, .

Nowthat we have .domplvted our ex nation of the symbols in the funnel

of ZERO. we will briefly indicate the way'in which this procedure isused.

First," we must he aware that there" tre Aree f.lOw Charts,. implicit in the

'receding discussion: Be'sides the flow chart forrthe procedure ZFRO there must

be,a main flow chart which balls forth execution of ZpO and at-least one, .
function reference flow chart for the function to which ZERO is to be applied.

We illustrate in Figure 7-8 a simple 'case study. For this purpose we, haves'
created. f'unctions MOT and G defined by

and

'+

FUW(K) = x3 5x

G(x) ..x3 + 3x2 + hx.

307

e-) s's

"'

'woo
- - -77

a

4

.

7-1

R "MeVlod is
iriapplicable"

5

,d;alpha

EXECUTE

ZERO(Q,BOX8,c;d,alpha,ROOT)

ROOT

i 8
"Method is
indpplicableu

'11

a.

NB,

z (jx,4 3)x x+ 4)x x

(a) Main .('3) kFrocedure ZERO P (c) Functio refererices

Figure 7-8. Interplay

Very little explanation is needed for Figure T-8. IC.main flow dharrt will

usually do 'more with the roots than just print out the values.

the main flow w-chart may cell for, the execution of zero sevtral

for the root of a ,different function.

In particular,

time , each time.

F may be omitted from the funnel of Figure 7 -8(b) (the si ouette of

Figure 7-6) but then in Figure 7 -6, the references to the fu tion F.thre not
.

boeplazeholdarbuttoafunctionacbudllynamedFLI ny main flow'Chart
1.. /

calling for the execution of ZERO, the function name mu be omitted from the
/

EXECUTE box and anymain program can only call for th

td the single function put int? the compU underunde
/

nelgg F.*

/tt

30E?
-0

execution of ZERO applied.
-1-

Exercises 7-1 Set D

2
1. By graphing, it becomes cleat that eadh of the two equations

3
sin x = --x

7 -1

and tan x = 10x has a solution in'the interval (0, Prepare all

the necessary flow charts for determining whichof these roots is the

greater. The ZERO procedure.is understood to be available already in

flow chart form:

2. BY i certain theorem the function H(X) =-6x5 + 5xk -'4x -:.2* - 1 has
.

,

. exactly one posi iye root. Since H(0) = -1 < 0 and H(1) 4 > 0, 1

1-

this fUnction h s at least one root in the interval (0,1). Draw the.-

necessary flow chartt which, when used together with ZERO, will print

out the value, Rr of this root and G(R) where G(X) _6
and 5 'values of G(X) and, H(X) separe.t4by .01 in X on both sides

of R. 4.
- r

'
..

.. . r ,

3. Draw the flow charts phi h, used together with ZERO, will print out the
e

root of inx = -x. In this problem the.40 chart for the reference
:

.

function, in, does not have to be drawn..
/ .21
I

, , . &
.,.

4. Suppose a satellite,is in a circular orbit. Let the radius be 1 centered
,,

at the origin. 44'aw the necessary4f0w charts to be used in conjunction

with ZERO fOr finding the intersections of the orbit with th9,trajeotoriet .

i o. . / . ___. ' ..1,

(a), xy = li for 0 < x <
1

.

(b) y = xn where, n = 1, 2,t 4, 5
,

t

for 0 < x'< 1

(For students with some knowledge of differential calculuq Find the

minimum value of x5 - 3x?"- kx for x > O. You may assumes that the

derivative has only one root.

While explorin4Okhe city,'a visitor to San Francisco mime upon a curious

configuration of ladders in an alley between two Starting'.
,

on opposite sidet of the alley, each ladder was proppedligains the base

of one building and crossed the alley to rest,against a wall on the other

side. As the visitor walked slowly beneath them, he musedto himself, ,

"The rungs of the ladder are about ona,foot apart. One ladder looks about;

25 feet long; the Second is a bit short of 20. The ladders cross

about a foot over my head and I gm six feet tall. I think I should be

able to deduce how wide the'alley is." '

L,

309

3 0'9.

^4. /.
.4

$.A

.

Your proh
,

is to carry out this calculation for the visitor. To
:.'

you get'started,'stridy the twb diagrads:' The firSt is a,,,,scliematic
.7 r-".",

Zvi i-.ifthe alIeg.,....,,The second is a more abst6ct dAwing of the,situa-

:
'tion.

::
Take one,11tdder to be 25 feet Long, 'the othOi 18.75, and'take

---,."....2

--the -crossover point tobe 7.2 feet-above the ground. Notice -that there

k.

4

Diagram 1

are two sets of similar righttri'tgles involved, for which we can say.

4 .
\s 7 w-z

and
.2

x w y w
. N

Substituting from-the first equation, for - in the second,' we have

7___.2 7.2 .= 1 _ --- .
. '

./
Y X

. e,
. ,

.
, .:

:Now using the Pythagorean peoremstwe can rewrite this as

or

. 7.2 7.2

/252
1

w2 i(18.75)2 w2

7.2 7.2

21T--742 A.8.752 - w2

3. = 0.

Now we have the equation whose solution will give.us the width of'the

alley. Why not call the functift ,f(w) and use the method.of successive
. -

4 b1section? Take th6 starting interval as (0,18], and find the width of

.the alley to the nearest foot following the flOw chart of Figure 7-5".

*N.

ft

0.i.,

310

3 0

0"

,7-2

,7-2 T12. Area Under a Curve: An example, y = 17x between x = 1 and x = 2

In'yqur previous work in mathematics you may have needed to find the area
tinder a \.:i.rire. Thus,, if the curve y = f(x) is plcrpted in the usual way, such

' \as in Figure Ta9, we may want to calctilate the area under y = f(x),. above the 41

x-axis and between the vertical. lines x = 6., and x = b. We assume here that. .

eof (ex) ls positive so that it makes seise to speak of area under the - curve.

0

Figure 7 -9 Graph showing the area under some
y = f(x) between x = a and x = b,curve

Area under y gaphPcally

,"
the natural logarithm of '-"x,
y = I/ x- between x ,= 1. and

In..manyb)oks' the study

deduce the pro

ye

',f.'s.- o

-

.

tr"I

1

of the logarithm function betlins by'introducing
denoted by .Enx as the area under the curve "
x From this defi ition we are able to

es "of tux.
ti

' ft

-

k

L

1

eer

Fig4re 7-10. Graph of y = -(7 between

4

'Figure 2.1.10 shows the graph of y = 1 /x., Ttit shaded area udder the curve

between x = 1 and x = t gives`the value of inx. If this graph is plotted

on squared graph paper with-a much larger scale, as in Figulp 7-111 we can cal-,

culate the approximate value of int by counting squares rn the area under the

i

x = 1 and

curve. For example, let, us compute in 1..05,kapproximately.
.

,.v...

,..
. -.In Figdrp 7-11 we find that the number of squares lying wliolely under

\ 1

the curve from x = 1 to x = 1.8 is 1438'. Since the area of each square
...vo.

'is -.02.x .02 = .0004 we see that'the total area of these squares is, !1732

N This would clearly yield an underestimate for the area under, the curve. If we

haAtalso counted the sauares that the curve passes throul, we would havcb-
7

tgned an oxerestimate for the area under the curves The tote,- number of'

vequares with these additiondl squares,9guated:An woul4je 1499 having atotal
, o

.,

area of 1499 x 0004-= .5996. Theysterage of these,two-eetimates ought to
. .

. yield a. pretty good approximation of in 1.8, the true area under the curve.
4F

__This average ig ,(.5732 + .5996)/2 = .5864. From tables the value of in(1.8)
,

correct to five decimal places is .58688.

4ilt`

11

I

7-2

To be sure, there are other more accurate methods for calculating loge-.

rithms but we don't want to.discuss these methods here. Using them, tableSY'
. .

have been prepared and you are certainly acquainted with such tables,.

-*
Counting the squares under the curve ip at best a tedious way of,i4inding

the area under the curve. We can find the area more easily and more accurately

by making use of ourknowledge of finding areas of certain figures. Thus, we

know how 'to find the area of a'rectangle or a'tTiangle or a trapezoid. The

area of a rectangle is, of course, the product of its length by its width; the

area of a triangle is one-half the product Ofsits base by its altittide; and the

area of a trapezoid is the product of the altitude,by the average of its two

' parallel bases, as shOwn.below.

bl

2

b2

Area =hob

Area under' y = l/x. by summing trapezoidal areas -
t4

Now suppose we want.to calculate an approximation to in 2. libritnow
AP!,

that in 2 is the area undey the curve y = l/x between x = 1 and, x

For convenience in writing we denote the equation oft, this curve by y =:f(X).

Here, of course, f(xr= 1/A. This is the area ABDC in Figure

We can calculate an approximation to this'area if Welld&Wasttaighel ne

from. C to D as shown in Figure 7-12. Then we have a trapezoid whbse area

Figure 7-12. Area under y = l/x approximated

by 'a single trapezoid 1.

f

1

7-2

,

,

,..is only' slightlk larger than the desired area. The area of the trapezoid is

b
1
+ b

2\
- - h X (

2 '

To

. Pit
= (B - fAl x

2

= (2 - 1) x'f(1) 1:(2)

=
1

X (f(1),+ f(2))

1 1
)

1 3 3
-
2

x (1 +
2 f 2 .4

So we Iii.nowt1mt the desired area, 2n2,' is less than .75 but fair lose

to it. x i
;

41g.
. , 4 \j ,

,
lc ,:-, .We can i4ove this estimate of the;,,, ,Apt we diyide it into two parts

by drawing the vertical line x = 3
in Fl.gure 7-13. .:;:','

^-q

"I. 1 3/2 2,4 C.

' Figure 7-13. Approximation of 2n2 using two trapezoids

B

Y = f(x) =-
1

x

s figure allows us to compare geometrically.the ,appro2 .;:riziatfon using

4

one 't apeza4,A with the approximation using two trapezoids. The aMOuntb9' which

the e r0.4-rethaced is represehted by the area of,the shaded triangle PQR.

All t at is eft of the error is represented by the two tiny unshaded slivers .

betwe n the, woshated regions.
* , 4

I
ti

Yr

Eierclses 7-2?' Set

(

3'The area of the trapezoid ABRP has already been calculated to be .4

and is called T 0. Calculate the value of T1, the sum of the areas of

the two trapezoids' AOQP and CBRQ:

2. a. Find the value ,f the 'absolute difference 1T0 (the plea of the

. shaded triangle

Our calculations the sum of thd`areas of the two trapezoids 'now follows.
4y

3 \

1 f(I)_.4- f(xJ- , .,'

Area of trapezoid ACQP -
C I. rivil (.2\1

2 2L2 ' ' 2 '2"
- i

. f(1) + f(2) ,

1 2 1.1 ,3, .1 , .
Area of trapezoid CBRQ

2,
X L fl) + fl2)].

2 2 2 2 2
0

The sum of these values is

T -= -1-.(1. f(1). + f(1) -1- i f(2)].
,, 1 2 2 2 2
4

And' since T

in the form

: = + f(2)) +f(i)].
.

it
^ '

as-already been seen to 4be
1
(f(1)-+ f(2)) .owe can writell
2 1

T = [T ,+ f(1.)] 143- 2] ,m71.7 08'
1

.1 2 0 2 2 3 c, . '7

4 .

Note well tha T1 is calculated from TO using only one newvvalue of the

unction; namely, ,f(i)._

We could get a still better approximation} to the area between 1 and 2

if $a divided this area into 3 parts by equally spaced vertical linewor
v.T0p,

better still,by dividing it into 4 ,parts by eqUally spaced*-Itical lines.

The latter is particularly convenient as we kllthelimere15? add two more points
4,

,of subdivision, and 'for the interval AB to the one/ we already

have. Thq adintage of using sadivilsC5n pointureviously'Used should be ob- .

4,01.viout fox by this method we can use the functIonf values previously calculated.
, .

We show in Figure 7-111-the result of halving each of the intervals AC

and aB' of Figure 7-13, thereby approximating .8n2' by four trapezoids.' .

...-- 316

3

/
I

N 1
y = f(x) = -

Figure 7-14. Divide and conguer
.

"Tbig time the areas of the four slivers representing, the error is virtuallyn
+imperceptible to the unaided eye.

Exercises 7-2 Set B

7-2

1. Calculate the sum T
2

of the areas of the four trapezoids ADSE, DCQS,
COAL and EBRU of Figure 7-11.

.

(7 .

2. Calculate the absolute difference,of
1and.72'-ilye*O'rattionai-.< .

form and ,also give a four,digit,decimal approximation o .11544plifference.,

' 3. Make ecaregul tracing of Figure,7-14 shading the two tri es PQS and
QRV. Comparing with Figure 7-13, show that the sum of the a eas of these

two triangles is equal to value of IT - T
2

1 calculated in
,A Problem 2. .

7

1.

°

7-2

We will present the calculation,of T2, the sum of the areas of the four

triapetbids, in a revealing forms

Their sum is

1 f(1) f() lf()
Anse

2) Area. DCQ'S 2)

1 fq3 f()" 1
f(7) + f(2)

Area CEVQ .().Area EBRV), .

Area

T2 = .t[t. f(1) + f() + f(i) + (T) +

On. rearra ang'these terms we have

\T2 ;-:[(2 f(l) + f(2)) + f() f(,]

ley 1 f(.0 + f(),
2(2 f(1) + f(i) f(2)) + .

,

cr.

Inside the-brackets we see the expression 224 f(1) + f(i) + f(2)) which is

exactly one of the forms'calculated for T1. Therefore; .

f(5)4 f677)
T = -{T
2 1 2

4 4
7 e5 7 i .41171

2 4 1680 w

The tabulated value of 2n2 to four decimal piacesis' .6931.

From the previous' calculations a pattern emerges for computing the succes-

sive values of the approximations . In each. -case we add to the

.\ previous approximation the arithmetic mean (or average) of the newly computed

fractional values and then halve the result. Thus, .

.
. \

\ .

orb.and so It is eas'ilychesked'that this agrees with the value of T cal,
3 ,

oalated dite..,,7;ithat expressing it in terms of T which is
..y

given by
. . .

T 1(T 4 f47)'4. ITf(15)
-,

]

3 2 2 4. 4 ,

T3. WM) f(;)-1- f(i)+ f(4 f(i) f(4.) f() f($) ;T(2)].

318

'14r-3 .7S

4' e
7 -2

4.0
. In the -general case we assume that the interval from 1 to 2 is divided

n
-into-.2 equal parts ley the 'point"

1 2 -k1, 1 + +
2 2

Every,other point

the new partition points are

in this list is a.. newly adjoined partition point. That is;

And

1 3 51 74, 1 + 1 + +
2 -1

.2 -2 2

now, according to the above,pattern,
-

T = T
n 2, nbl

4-

.
f(1 + 3--) + + 'n1)

,

2

,'1

2n 2n
2

.

We now present apreliminary flow chart showing hoi ona could calculate

Nkhe approximations To, Ti, T2, ..., fin. ... for 1,2...,2n ,... subdivisions.

We do not provide any way of terxinatil the calculations yet.

11

, f(1),+ f(2)
2

n 1 S

4 4
k%1

k <. 2n -='1

k 4- k + 2

4_ S f +
2n

F 2 1
"E

T + 1
X 5]n n-1

n, Tn

4
n n + 1

.
Figure, 7 -15. Ponterminating area calculation for y = l/x

°

The calculation described ia- Figure 7-15 will never terminate. We must
iow introduce' a meadre of accuracy. We agree to .stop the calculation as soon.

as the magnitude of the differenceVetwean consecutive sums is small, say,

less than some given e. If we-incorporate this test into the flow &art of

Figure 7-15, we obtain for the complete calculation of the area under a curve

y = f(x) in the interval betlep x^-.: 1 and 'x = 2 the flo* chart given in

319 0 -
t)

,

7-2
4 4

, Figure 7-16. Of course, it is understood that in the example under discussion

f(x) is given by. f(x) = 1.'

r

r.

f(1) + f(2)
2

V

2

3

s 0

k F 1

(--k+2

4 -
s
k < 2

n
-

F Ls
1

J
5

s F s +.f(17.1.

2"

6

n
+ s 2

n-1
)/2

7

I <-

F
8

n, +

AREA 4-- Tn

10

"AREA=" , AREA
.

r

41.

Figure, 7 -16. Complete flow chart for area under y =
1

between x = 1 and x = 2 (first version)

326'3 0
...NI'. "

Exercises 7-2 Set C

NV2

1. Find the, abscissa values resulting the vision of tfle segment (1,0)

to (2,0) on the x-axis into 16

2. If an interval is divided into 2
n

number of subdivisions when n

equal parts:

.equal parts, what happens to the

is increased by /
4%

3. Find the abscissa values resulting

to (5,0) on the x-axis into eight e ual parts.

1113and the points 1, 1 + h/2n, 1 + 2h/ ...).

Given the function .y (
='3x

2
+ 2x + 1 and the interval' x =1 to x = 2,

you are to approimate the area below the curve and above the x-axis.

Decide what changes are neceqsary in Figure 7-16 in order to specialize

the approximating process tO this function and this interval. Draw)the

from the divis.on Of the segment (1,0)

(Note: Let b - a = h,
.,.

flowchart for'this function in the interval.

5. Study the flow chart of Figure 7-16 for the function

interval x = 1 to x = 2.

(a) What is the value of T
0

?

(b) When n = 1 how many times do you enter the iteration box, 4 ?

How many times do you exit to box 5? How many times to box 6 ?,

y (c2 in the

. (c)

(d) When n = 3 how many times do you enter the iteration box 4 2

(e)" When n 3, what is the value of ,S the'last time you enter the

iteration box 4 2

When n . 10, how many times do you enter box,4,?

'.these times do you exit to box 5 2

.r
(g) For E = .03_ calculate the value of -n, when-box isNentered.--

What is the value of T
n

in box 6 the first time you calculate it?

(f) How many of

lu

O

6. Suppose that the interval from

by points 1, 1 + 7110-41L,

assuMed that n is a power of

'between x = 1 and x = 2 is

trapezoids.

1 to 2 is divided intoltn equal parts
k n-1, 1 + ..f; 1 + 2' where it-ieT'not

2. The area under the curvp y = f(x)

to be approximated by a sum of freas of

(a)- Obtain a formula for this approximation in terms of the ordinates at

the points of division. (Look back in the previous discussion and
te

note how T0, T1, T2 and T3 were expressed in terms of the ordin-

ates at the points of subdivi;ion.),

(b) Draw a flow chart to describe the calculation.

321

.
.r

(

7-2 .

.(a) Sketch the curve y = betwqem,ix l' and x = 9. .

x

4 1L--(b) J10: Approximate the area by aingle trapezoid bou

and f(9). First express the area in terms of f(

thcn cvaluatC. ,

(c) Ti: Approximate.

'by f(i) and f(

terns of, f(1), f

(d) T2: Approximate

f(5), f(7) and

d by f(1)

) and f(9);

the area by the sum of 2 trapezoids, one bounded

5), the other by_.f(5) and f(9). Express in

(5) and f(9). Evaluate.

by 4 trapezoids. State in tent of f(1), f(3),

f(9). Evaluate.

(e)T-
3.

Approximate by 8 -trapezoids. Again express in f(1), etc.,

and evaluate.

(f) 'Look at the formula"for T1. How can it be derived from To and

f(5). How can T
2

be found from T1; T
3

from T
2
? Use these new

formulas to verify your calculations in (c): (d), and (e).

(g) From your study of part (f) write a formula for T4. Can you derive

one for T
n

? 0

4-
(h) Sketch a flow chart tiO eva luate the area., should tewinate as

soon as 2 'succesSiye approximation's differ in absolute value by

less than 10-3.

-
p 8. Repeating the method of problem 7, calculate the area below y = x

2
, above

x-axis, between x = 2 and x = 4.

(a) Evaluate T
0,

T
1,

T2.

(b) Relate T
1

to T
0

and T
2

to T1.

0-WriteaformulaforT31 for T.

Another look at the flow chart fo*the area under y = 1/x

We note that there are several sources of'inefficiency in this cal-

culation. In otir iteration box we have to test k against` 2n2
n

- 1 which will

require a calculation of 2n - 1 several times. Even one calculation of 2n
,

for each n may be time-,consuming and should be avoided if possible. It will

be better to use the test k < 2n instead of k < 2n - 1. Then we can simplify

this to k < m where we set m = 1, when n = 0 Tat the s rt and double m

he quantity 2n.lfh time n is in sed by 1. Thus, m representscr,1

)

41 22
,, /

/

,

In the same way we can avoid the diviSions by 2n And 2n-1. tsttad,

we keep a number h which is set equal to 1 for n .'0 and the divided by
2 each time as n is in6reased by °I.. Thus, at each stage h = /m = 1/2n.

, We do not really need to keep all the sums T0, Tif, T2, ... Tn but

actually need-only the gurrent 'sum and the previouS sum at each-stage. We

could denote these respectively, NUAREA and OLDAREA.. Moreover, we-have no,

further need for the variable n. If we do these things, then instead of

Figure 7-164 we would have"the more, efficient flow chart, Figure 7-17.
Alp

7-2

J

OLDAREA
f(1) f(2)

2

m 1

h Fl
3

m 2..x m

h h/2

s 0

k -1

k k+2
k <

5

s s + f(1 k x h)

6

Diumitai x OLDAREA + h x
t,!, 2

(I NU AREA - OLDAREAI <

a
OLDAREA NUAREA

f

.

`4ei

,Figure 7-17. Improvement, of.Figure 7 -16 flow chart,

4.0

a32.3

The Area Under a .Curve: The General Case
4-

lek

In the previous section and in its exercises we have seen how to calculate

o appations to the area under various curvesopWe now want to discuss the.

formulas and theTheceasary flow harts for solving the same'problem for any

,curvewhicIrlies above the x;axis. I
We want to find an approximatiorrto the area under a curve y = f(x),

above the x-axis and between the vertical lines x = a and x = b. She

Figure 7-18.

Figure 7-18. Curve
x = b

y = f(x) between x = a and

showing n subintervals

We can diVIde the intetval from a to b into n: equal parts and approximate

, the area standing on each of these parts by a trapezoid as shown in Figure 7-1{9.

1'

Ft t e 7-19. n subintervals with t rape;oids

324

t'

-We denote the length

-4 1

4,

/thrttrgaTiirgval*' h. Clearlyn,

=

Tlp the x- coordinates of the'' points

a,

,(b-a)/n.

9!--(3,iielon are

".4, a+ , a +,,-.(11,;;X h, b.

The ordinate's at these points are, respectively,_

'-. 'Then the
1. e.

A

a) , f (a+h), fr(a+hr":":%-, T(a+Iiht' :., + (n-1')i0, (b)

areas of the approkimating trapezoids are
,

f(a) + f(a+h) f(a+h) + f(a), h

f(a+kh)+f,(a+(k+l)h)'
2

The sum, Sn, of these areas is given by

h

r c-h(2f(a)+ f(a+h)+ f(a+2h) + f(a+kh)+

J
whgre, Of course, = (b.,- a)/n.

f(l(11.11)h) .4,:f(b)
, ,

2

if(a+(n-1)h) +-1f(b))
2

4,I . .
."`

4

In order to_ decide what -value of n to use to obtain a specified :accuracy
inthe calculation it will bhconvenient as in Section 7-? to calculate, the

.approximating sum for 1, 2, 1, 8, 16, subdivisions of the interval
from' a -to b. Then, as, in the example.cleseribed in that section, etieh sum,4-A 'A A "

can-be calcillated from the .previous one And the function f(x) has to be,.; -
avalUated, only-at the new points of subdivision. Let T0 denote the sum

.'',-ths:. interval ",a - to -b----is taken) thont-subdividing, T, the. . . j-intervals, 'T2 the sub with At subintervals, ..., 11_ the sum with
ri-- intervals. Then- we have . r,

'.I" () + f (b) ,
h0 2

a
.T. -

- ,' ,--:: - 1Ti = hi(7,1T"(a), + f(a+hi) + 2f(b)1c.,

.1.

where ho,--i. b- - a, ', hi. = OD7,0A... h04. If we compa're the
and', i.4- and use the formula :fOr h1, we see that

when

sari with 2 'sub-
tri

2 ,

1
f(-'0 110f(ettil)/ -2-TO--+'hlf(a+hl

7-3

We_havealso

. T2 = h2[2f(a) + f(ath2) + f(a+2112) + f(at5h2) +
1

where h2 (b-a)/4 =A1/2. If we.comloare the formulas for Ti and T24`we

see, since a + 211'2 = a + h1, that

.

' '
-1 1

T = -4T + h.jfketi-h) +-fka+3h))) = -T + h (f(a+h2) +fka+3h
2

I.

2 2 1 2 , % 2 14 2
.

The generating principle is now clear. We ,call write immediately

e ,T3 -1T2 +h3 (f(a+h
3

+ f(a+3h
3
) + f(a+5h

3
) +f(a+711

3
)1

d

' where h
3
='(b-a)/8 = h2/2. In, the general case we have

y

T
2
T
n-1

+ h
n
(f(a+h

n
),+ f(a+jhd + + f(a +,(2n-l)hn)]

n,-

1 2
n-1 ..

=
2
T
n-1

+ h
n

2 f(a + (2k-l)hA) ir

k=1

----- "-.-

4
where h

n
=

i-
(b-a)/2n = h

n-1
/2. to,

:

I I,.

Finally we must provide a means of terminating the.calculation of these .')

1.

approximating sums. We agree to stop the calculation as soon as the absolute
..1121

value of the difference between trio consecutive calculated sums is small, say,';

less than some,iyen -e.\We try to make the calculatiop reasonably efficient

by avoiding calculation of 2n and we are4huidled to a flOw chart similar to

that of Figure 7517 This flow chart, FigurV7-20, describes the calculation

-?
_A

ofan approximation to the area under the curve y = f(x), 'above thex-axis

---and,between x = a and x = b., We assume that the necessary values of f(x)

will besUpplied by a functionalreference flow chart. As in the flow chari of

Figure 7-17, the use of a subscrIpttn is avoided since we need only the mt

recent values of. h and m and the last two values of T '(called OLDAREA
I '

and RUAREA). .

If

326:

O

4

1

in

h b -

r Ortif Qr.

2

OLDAREA h x (f(a) + f(b))/2

F

3

m 2 x m
ih 4.- h/2

s 0
1

k 1

k k+2
k<

fa

s s + f(a + k x h)

6,

AREA >5 OLDAREA +11 x s

7

NUAREA-- OLDAREAI < e

OLDAREA NUAREA°

a

E

I"AREA="', NUAREA

, 4

, Figure 7-20. Flow chart for area under a .urve y = f(x)

between x = x = b

7-3

`-%

Itwill be interesting to compare the very minor points of difference in
.

the flow
i
charts of Figures 7-17 and 7-20. These differences are seen in boxes

0, 1, 2, 5. If a and b of Figure 7-20 are replaced by 1 and 2, respec-

tively, then Figure,7 -20 ialideritical with Figure 7-17.
t.

. A., 0 . .

Naturally, we would like to be able to file

procedure in finding the ea under any curve

a the f464 chart of Fig-

ure 7-20 to use it as a pover
Any interval (a,b). To do this we need make c anges.only in the flow chart of

Figure 7-2.' We replace box 9 and its stop-box by

I A

And we replace the start box and box 0by either 7-21(a) or 7-21(b) according

to whether function names are available to us as parameters.

AREA(a,b,es, AREA ,i)

3 (a)

Figure 7-21.

ti

r In FiguA 7-21(b) the procedure will apply only to a functio2 a1n f.

The framing of the variable AREA in the funnels follows the conventio intro-

duced in SectiOn 7-1.

Two procedurizaiions of Figure,7-21,

Exercises 7-3

1. Draw, a flow chart to represent the calculation'

where

n-1

S
n

= h(!f(a) + +f(a+kh) lf(b))
2 2

k=1

h = (1)-a)/n.

Draw a dlow chart similar-to Figure 7-V to indicate the calculation of

the T T1, T ... `L :'. where \T0,
1, 2' 1.. ' '

`...
It,

2
n-1

.- 4-,1 ..,...

T = .-It' + h '''.7Z f (: --: -,,, z ,, 1)h --'' "''''s
n 2 rial.,.., nk=i n

and h
n

= (b:a)/2n. Do riot PlOV'ide any iermin tion
',.

e,-

,328
.

. A .

. -J . ,

.- It might happen that the calculation described in Figure 7-20 would river,
. .;.- terminate because the function f(x) might be badly behaved or because.

the tolerance.e is chosen too. small for the accoacy of the machine used

for the calculation. In kuch a case we say that the calculation has
.

1`.'

7-3;

1

entered an endlAs loop. Suggest away to protect against this possibility

and revise the flow chart of'Figure 7-20 to incorporate' this protection: "-

Drag' it is aprocedure and include the necessary statement label in the ,

- funnel.

1. Compare the flow charts drawn for Exercises 7-2, Set C, Problem 8(h), with

the flow chart of Figure 7-20. If they are differenty,revise them to agree

with tkeflow chart of Figure 7-20.

5. For tpe area's descrl.bed below; calculate approximations following the steps
0of the flow chart of Figure 7720. x

(a) Below y x2,,, above the x-axis, between x = 2 and x = 4.

Use 6.= 0.1. (True area is 56/3.) 0

.6)) Below y = x3, above y betrifen x = 1, and X= 4.

Use E = 0.5. (True area is 171/4.)

6: Draw a functional.reference flow chart. which can be used with the pro-

: cedure of Figure 7-20 (with one of the funnels of Figure 7-21) to approx-

imate the value of rt to four decimal places. ,Drawfalso,the flow chart

which calls'On the procedure and prints outthe result.
. 0 186,

The number x for which /nx F- 1 is a very important mathematical con:

stant;bn a par with n. This constant is designated by the letter e.

. It is interesting that we now have a method at our disposal (although,

not ,the best one) for computing the value of e. This methdd-is .based on

the fact that -1 e'throot of
. .

Int - 1 = 0.

ti

Thut, if we can prepare a flow chart which will compute tile values of
, .

Anx - 1 to, ,say
)
six decimal places, we can then apply the procedure..

.t,ZERO to find this root. 1
! .

.
.

..
,-- r, .. 1

Make the necessary revisions in,the f1ow chart of Figure 7-20 to Con-
.

vert it into a fungtionL reference flow chart for F(X) ±= /nx - 1.. You
..1,. . o

. . f 1
o

;* will have to decide what to do ahot a', b, eend f occurtingin

' Figure-7-20:. thbsmdin flow'bhart whith tallsionp110 will'involvlek the use
7 4

1, of some preliminary eetimites df the interval in whichtheirodt lies.
- 4

329

3,(2-9

v

7-4-

7-4 Simultaneous Linear Equations: Developing a systematic method of solution
at

Introduction: SolutionVey,graphing

You have often solved eystems of_two esiNtions. You may het also

solved sygtens of three or even four-simultaneous linear equations. In many

\4troblems of science, engineering, business, politics, etc., it is necessary to

solve systems of simultaneous linear equations involving very large numbers of

variables and equations, perhaps as manias 10,000 equations involving

10,000 variables. It is therefore impOrtant to'study the problem of solving %.

systems of linear equations and to devise efficient methbds- for solving such

systems.

You will recall that the problem of solving two simultaneous linear equa-'

tions in x And y can be interpreted geometrically. Thus, an equation

such ai

_f 3x - 4y = 12

represents a straight line which can be plotted on a set of xy-axes. Another

4x + 12Y + 23 = 0

equation such as

also repreents a straight line. If we are asked to solve these equailons

simultaneously, th n we are Seeking values of x and y which satisfy both

equations at the sam time. Geometrically this means that the point whose

coordinates are these values of x And y lies on both lines and hence is

their intersection: The graphs of these two lines are shown in Figure 7-22.

Y

.I

Figure 7,22.
j

-

Graphs of 3 n- 4y-,= 12
, t

330

lA 33,0

and 4x t1.2y + 23 = 0

We see that the lines inte in the pointAl -9/4) and thus xi= 1,

y = -9/4 is the solution of this Pair,oekuations.
. .

.

We know that two lines always interseet.in exactly one point unless they

are parallel or are really the same two simultaneous linear equa-

tions also have exactly one soldtion unless they rgpresent parallel lines or

, the same line. If the lines are parallel, therestsno solution. For example,

the equations

7-4

x + 2y = 7

x + 2y =.8

represent parallel lines and hence have no solution. This situation is shown

in Figure 7-23.
J.

Y
..

Figur/7-23. Graphs of x + 2y = 7 and x + 2y = 8

#

On the other hand, he equations

x + 2y F 7

r
'2x + 4y = 14

have infinitely many solutions as they are really the same'line, namely, the

slower line OT Filgre 7-23.

You are also familiar with the fact that a linear equation in three var-

iableA can be represented as a plane in -dimgpsiOnal space. .Hence, three

simultaneous linear equations in three unknowns will have a unique solution if

the corresponding planes intersect in a single point and this solution will be

their point of intersection. But it is'atio possible that three planes inter-

3J1

7-4
k

sect in one, two or three straight lines, or that they be parallef,or even that

they all be really thelek plane. Thus, three simultaneous linear equations

in.three unknowns mayials possess infinitely'many solutions or no solutions.

Similar situations arise hen we consider more equations in more unknowns.

",7

e

Ekercfles 7-4 NSet A

Draw the graphs of each pair of, straight lines on a Separate set of axes

and determine their' intersection, if any.

1. 4x - 2y = 7 3. 3x - y

3x + 5y = 13 6x - 2y 11

2. 3x - 5y = '4. x + 3y 11

5x + 334= 12 3x + 9y = 33

A Systematic Method of Solution

In'this section we are going to assume that the system of equations

has one solution and that no special diffioulties arise. You have learned how

-to solve two equations in two unknowns by several different methods. In one

mmnori method, ofteh called "substitution," you solve for one variable, say y,

in.one equation and substitute it into the other equation, thus eliminating y.

For example, given the set
47

37C 4y = 12

4x + 12y',= -2

we might solve the first equation for y, obtaining

1
y = .4.(3x-12)

and substitute this into the second equaton, obtaining

13X = 13.

Hence, x = 1 and it foil* that y = -9/4.

Another method, Sometimes called "addition and subtraction" consists of

adding (or subtracting) a multiple of.one equation to (Or from) the.other

equation so as to eliMinate one of the variables. Using the same set of equa-

tions as above we might add, 3 times the first equation to the second equation

yielding the equivalent.set otequationS,
$

I
332

337,,

7-4

3x - 4y = 12

1. 13x = 13

.Again we find that x = 1 and from the first equation y = -9 4? .

It is important to point out that when we modify an equation in a system

of simultaneous linear equations by adding to (or subtractin g from) it a mul-

tiple of another equation of the system, we do not changer the solution set of

, the 'system.

In phapter 6 we described an algorithm for the solution of two equations

in two unknowns which was more suitable than either of these methods for use

on an automatic digital computer because it was more systematic. -It did not

depend on an °examination of the equations to pick out "convenient" coefficients.

For our hand calculations we attempted to choose the order:of calculations to

minimize the.4work. But since the computer calculates with big numbers or frac-

tional numbers just as easily as withe small integers, thii searching and choice
7

is no logger necessary. If we folloW the method described in Chapter 6, then

we always proceed in the same systematic manner. If we apply this method to

our system:of equations

3x - 4y,= 12

=

then we begin by dividing he first equation by 3 obtaining"

14.

y =4.x

.,
2

We then subtract 4 times this quation from the pecond equation in order to

eliminate x from'the latter. Thus, we obtain

- 16

or

(12 +
3
--)y-= -23 -

52

3
Y = -39,

This pqUatdonis now divided by 52/3 reducing it to the form

y -9/4.

From this equation it is obvious that the soldtion for y is -9/4 as before.,

We 'nOw substitute this Vlaue of y into the modified first equation :obtaining

**, X = 1.

333.

7-4

.1.

in order to make clear how this systematic method can be applied to larger

systems of equations we shall use it to solve a systemof three simultaneous

'linear equations. Consider the system

3x t 2y + 7z, = 4

2x + 3y +-z = 5

3x ;4- 4y + z =7.

We begin by dividing the first equation by 3, obtaining the system

, 2 7X + y+ 4

3 3

2x + 3y + z =5

3x + 4y + z =7. ,

(1)

(2)

We must now,eliminate x from the succeeding equations. Hence, we subtract

twice the modified first equation (2) from the second equation and three times

it from the third equation. We obtain .,

x + + z

5 11 7

y
-

3
z

3
(3)-

3
1

, 2y - 6 z = 3 .

We proceed with the last two equations, now in only two unknowns, as in one

earlier example. We divide the second equation of system (3) by 2. obtaining
3-

7x + +
7-z =5

3 3

,u
7

Y
5

=
5

231' - 6z = 3.

Then we subtract,twice this modified sec d equation from the last equation

.of (4) yie],ding

2
y -t-

7
zx +

3
-

^ 3

11 7
y - = 5

8 1-5z =

0

(4)"

(5)

7-

We divide the last equatipn,by -8/5, obtaining fOr it, z = -1/8. Thus; we

have replaced our original system of equations (1) by an equivalent system (6).

-

2 7 4
x +..-3

y +3z =r--13 3

11 7
y - --z

-55
1Z = - s

(61

Before we twork back in system,(6) to actually solve for xry, and z,

let's consider an important point. In the transformation of system (1) to

system (6) our computation really involved only the coefficients and right-hand

constants.. So we could display the essential information about, system (1) in

the form of an array of numbers. Thus, for (1) we could write the:Array

3

2

3

2 7

-,3 5

4 1 7

(

We know that certain operations can be performed on systems of equations

without changing the solution suet of the'original equations,-this is what we

have just done to obtain "system (6). These operations can be'carried over to

operations.on the array,. such as (11). Among these operations are the follow-.,

1.' We may multiply (or divide) any equation of the system by any con-

stant except zero. This does not change the equationvin an essential

way. This leans that' in the array we may multiply (or divide) each

'number in row by any constant except zero.
4 .

2. We May interchange the order in which the equations are wriitten.

This means we may interchange rows of the array.

3. -We may add (or subtract) a c stant multiple of one equation to

(or from) another equation. Thus, fo`r the array we may add (or
o

subtract) a constant multiple of one row to (or from) another row.

The systematic method we followed in going from system (1) to system (6)

may be represented in arrays as follows: f.

..-
3

2

3

2

3

4

7

.1

1

.

.5

'

il

400
7

(1't

335

.

)

Divide row 1 "by-3 .

1

2

3

2

3

3

11.

7,

5

1

1

117-

3

5

7

)

Subtract twice row 1 from row 2 and three times row 1 from row 3,

O

5Divide row Q by i 4

,3-
-:c--:

. ,

- I

Subtr'act twice row 2 from row

41

v

°
Divide row 3 by - 8

Q.

q

1

0

0

,

1

0

3,

1

0

0 '

1

0
. ,

0

2

3

5

3
2

,2

.

1

2

2

41

0

2

3

1

7

3

_11

3

.,-6

3

Al.

-6

7

3

11

8

5

7

3
11

1

--
4

7

3

-3

4.

3

7

5

3_

--4--

3

7

5
1

5

4
3
75

-E.

.

(3')

r.

(41)

(t)

(61) 0,

If we write the system of equations corresponding td;array°(61), we see that

our system is identical with equations (6). Thus,' instead of performing our

systematic method,oxythe equations as such, we may operate on the array.

Now lett s ;turn back to complete the solution of system (6). We see that

z = -1/8, apd working backwards in this system we find y = 9/8 and x = 7/8.
We often reter to this operation of working back as the "back solution..r

,

a

336

3 3 ;%

7-4

Exercise -7-4 SetI3

pmaW:a dow chart-to indicate the sequence of calculations in the soluilion

of the following sytem of equations. Follow the sistematic method described

in this section.

a x x - b
,21 1 22 2 2

Compare your flow chart with the'one in,Chapter 6.

11.

337

33'7

l

7-5 .

7-5 Simultaneous Linearkqiietions: Gauss Algorithm
, .

A'System of 3 kaationS.
1

We now want to describe an algorithm, the Gauss Algorithm, for the

'solution Of any system of three simultaneous linear equations in three un-

knowts. Since we will later want to consider morethan three equations, we

want to write our equations in a way that we canFtsily generalize. Thus,

instead of using the variables x, y and z, we will use subscripted variables
47,

x x
2

and x
3,

. The' coefficients will be idehtified with two subscripts, one-

to denote the'first, second or third equation and the other to indicate the

variable which is, being multiplied. For example, a
12

denotes the coefficient

of x
2

,in the first equation. Since the right side of each equation is a

constant, these right sides are conveniently denoted by quantities with a

single subscript. Thus, we consider the equations

C.

allxl 1212x2 a 13x3 bl

ael a22x2 a 23x3 b2

w31x1 + a32x2-+ a33x3 = b3

Thus, in the last example' discussed we have all = 3, a23= 1, a32 = 4,

b2 5, etc.

(7)

4

Now the essential information about the system of equations is given com-

pletely by the coefficients and so it can be displayed clearly i4 the form of'
,

an array of numbers k k

tea

4111.111411/1116a
11

a
12

a
13

bl

a21, a
22

a23 ib2

a32
431

a33
b3

Of course, array'(8) correspondsto array (1') in Our:previdus example.
- .

Now Iet us proceed to describe how to find the solution set of the simal-

taneous equations (7.), represented by array (8): YOu will recognize that we

4
are following precisely the,systema tic method we jast used in the numerical

example. In fact; you will find it helpful to look back at the example after

each step you tread in the general. discussion.

, 4

(

338

3'38 ,

4 7-5
AO"

,.
k.

1. We begin by diViding the first equation through by all. In other

words, we divide the numbers of the first row of the array (8) by
all'

Thus,

we must calculate a
11

/a
11

. 1, a
12

/a
11'

a
13

/a
11

laid bliall. These ers
,

are the First rows)f a new array and it would be CQDVOient to call then all,

a12, al3, and b1, again, the subscript 1 indicating the firit row as usual.

But if we try this and start to carry out the calculations in the order indi-
,

dated, we will replace. all by '1 before we calculate the new a12, al3 .and

bl. Thus, when weedivide by all ,we are really dividing by .1 instead of by

theold value of
all

as we intended to do. One way out of this difficulty is
..,

. to calculate b
1
/a

11'
' a

13
/a

11
and a12. /a

11
the new values of b1,a13 and_ - !

a12 ingthis order; that is, before we calculate all/all 1 the new value

Of a
11'

Actually there is no4point in calculating a
11

/a
11

which we knew

to be 1: It would be better just td leave all untouched and remember that

-the_ coefficient of x
1

in equation (1) is actually 1 whenpver we have need

-cif it.' 'Men there is no need to reverse the order of the calculations. .This.

it
is what

.hall

hall do.'"The modificatie of the first row, which we will refer

to as "
, lizplg", is indicated in the flow chart fragment of Figure 7-24.

.

j 4-.- 2

J(J+1 <J <.3

3
ai

1

Figure 7-24. Normalizing the first row

1

The.use oaf the iteration box here may seem a little silly. We present the

calculations in this form for later generalization to the Oase'of n equa-

tions in n .unknowns. .What would yOu have tp change in the loop shown in

this flow chart to make it apply to 4 equations?, n equations?

0

2. The next step is the elimination of xi froM both the second and

third equations. We need to subtract a
21

dimes the new first eqqation from

the-second equation and
31

times the new first equation from the third

equation. The new elements of the second row will be

a21 a21 X 1 r--o; a22

Again-We want

of the second row.

to use the

a21a12'
a23 - a

21
a16' b2 - a b

21 1

same games ea,' a22' a23:2 for the new elements

We have the, same probleA as earlier if we calculate a21

first and set it to zero. We again avoid the difficulty by leaving a
21

un-

touched and remembering that the coefficient of the correaponding' gation is

really zero. The calculation of the new elements oZthe secondlind third rows

is indicated in the flow chart of Figure.7-25.

4
5

i -2
i -<

--
3

i (-- i + 1
F

aE

Figure 7-25. Subtracting suitable multiples of r

the,filVi row from all the -following roes

(

We see that the variable. i controls the row on which We are working, while

,j determines the entry in the i
th row currently receiving the treatment.

s'

Observe that the "constant" multiplier a (meaning independent of j) is

used in.computing every elemeni in the new affray except for those in the first

row and those in the first coluin.

46 _

7 -5

What changes would be necessary if there were 4 equations in 4 un-

knowns? n equations in n unknowns? With these changesmade, how hinny times

would the outer loop of Figure 7-25 be executed with 4 equations in 4 un-
knowns? the inner loop? Answer these same questions for n equations in
n unknowns.

3. Nov we are ready to proceed with the elp4nation'of x2 from the '

third equation. But, let us first talWa look at our array as it now stands.

4

0 a12 aly

O
O

a23 b;

a32 a33 b3

%)1

oFigure 7-26. The present state of affairs

The decorated entries in our array represent values which we are keeping in

our heads. We have circled the zeros and boxed the . The task of eliminat-

ing 'x
2 from the third equation will employ the meth illustrated in Fig-

ures 7-24 and 7-25 except that the methods are applied to the smaller array

blocked off in the lower right of Figure 7-20.

PIrst, we dividethe second row of Figure 7-26 by a22, remembering that

the new a
22

will bed 1. Again, we use the iteration box for the purposes of

later generalization.

4-3
J < 3

j 4-j+1

3

4- a2
a22

4

4-
b2 /a2

Figure; 27. Normalizing the second row

.

725
4440.,

What changes would be necessary in Figure 7-27 tf there were 4''-equations?

n equations? How many ti would the loop be executed if thercy were ,4

equations? n equations?

Note that the flow chart of Figure 7-27 which describes the division of

the second row,to the right of a22 by a22 is entirely simila A? that of

Figure 7-24 which describes the division of the first row to the right of all

by all. We can therefore draw a single flow chart, Figure 7-28, to deicribe

the division of the k
th

row to the right of a
kk

'by- ate, where we understand

that ki. 1 or 2. Thus, we crave

igure 7-28. NOrmalizing the kth row

L

4. Next we eliminate x
2.

from the third equation by subtracting a mul-

tiple of the second equation from the third equation; that is, we subtract a
32

times the new second row from the third row of the array. This is indicated by
.

the flow chart in Figure 7-29. This flow chart seems ridiculuous complicated

since each of the indexing variables i ,and J assume only one value before

passing out of tie loop. Again, our motivation is' eventual generalization.

342

4.2

4,

,
-,J ,<3

j4,j+]..

6

Figure 7-29.- Subtracting suitable multiples of'the second

row from all the followingroWs

How many times it touter loop4in'this flowchart executed? the

hat ehanges'would be netessary if there were 4 equations? n

IL:Nmany Opes'wmuld.the outer and inner loops be executed,wfth

n estatione

How, if we compare Figures

combine them as, shown in Figure

of row 1 (as in Figure 7-25)
?

speak of Multiples of paw k.

or

7-25 and 7-29, we again

7-'30. Here, instead of

multiples of

1 4- 1 +

4

i <`3

inner loop?

equations?

4 equations?

see an opportunity to

referring totmultiplep

raw 2 (as.in,Fi.gure 7-29), we

p

8
4

Figures 7730.
.

A

Satracting.suitabl multiples, of the kbh

row from.all following rows

J 3"3 4 3

4

5.

have been

Let us take

made.

.

(.

a look at our arrayl,after the preceding modifications

/ a13
'

18.230
®

.--

0
")

a33 t;

i,

..

3

4.....:

Figure 7,31. PenultiMateiarray

We see that all that remains to be done...I:S.:to divide the third row by 'a33.

i.This is actually achieved by the flow chart oFiglire"7-28 with k = 3, In this

case, we have to.realizethat j + 1 means that' j +4" and, hence, it is

nevex,true that j < 3. Thus, the loop is never-executed but instead we go

directly to the box in which we have b /a.j, or since lc.= 3, b (--1;, /a
k, k _IPt 3 3 33

When this has been done, our array will have its final form shown in Figure

7-32(a).

a
12

a
13

b
1 X1 a12x2 a13x3 bl

(:) , a
23

b
2 2

+.
23 3 2

+ a x' = b

0 M

Fl

(a) Final array

b
3

x3 = b

Figure 7-32

(-1?)' System of equations
represented by*(a)

. We remind you again that the framed entries in the array of Figure 3-32(a)
....= .

, are the ones we are carrying,in our head. The system of',equations of Figure
.1'

7-32(b) is the system represented by.thelarray, to the, le* of it., We, recall.

i

'that the systemof equations pf Figure 7-32(br is equivalent to the"system we
'c

, started'out with, the system (7) on the first page of this section. By this

iwe ment4tjthe..solutions oflithe two systems are the Same, Furthermore, the -...-"'

final,,systm is rivial'to,solve. Of course, the values of al, a13,' a23, bl,
I ' ? 1

'b and b of Fi re 7-2 aie newAvalues and not the values represented by
; -2 - 5

.'

these-same variables in:(8). -3.-.) , \ .

)c

344

3:44.

1T

We have obtaine

following w y. For

chart 'of Figure 7-28

all this in one flow

d the array in Figure 7-32(1) from the array (7) in the

k = 1, 2 and 3 we haNe successively ,applied4the flow

followed by that of Figure 7-30. Now we want to collect°

chart. We do this in Figure 7-33.

V #

7-5

k 4-.).

k.< 3
k..-. k + 1

s

j + 1
j < 3

IT
3

aJci alcii.akk

1

s"

b

5

`-a- 1

i + 1
74'as

*6

+ 1 '''''

. i + 1 i,,)

a

II

. 's

8

cs-- a
ij

- a

b a b
ik k

a

Figur

. a

. ..-7

7-33 Flow phart for bringing array into

equiv &Ient super:7diaingl." form

-4 - ' s :'s /

, -

;

7-5:

,

It is easily checked that Figure 7l ,3,3 is obtained by linking the beginning

or Figure 7-30 to the end of Figura-71.28 and by hanging the new grouping fram

an iteration bdx (box 1)" that diasA
1

omibes the range for values of k.'

1$6

The Back Solution. Our aleorithreat this stage brings the originalsystem
4

of equations into the form of Figure 7-32(b). We next turn to the relatively

simple problem of flowchalting the solution'of this system. Twee how the

mathematical problem is solved, rewrite the system pf Figure 7-32'in the form:

= 1)1 al3x3 - al2x2

x2 = b2 - a23x3

,

x3 r b3, .

Now7we work from the bottom to the top; hence, the ,"back solution". The value

of00Ex
3

is obvious from the third equation. Sdbstituting this value in the

second equation we obtain the value of x2. Substituting the computed values

of x3 and x2 in -he'firsb equaton we,obtain the value of x1.

Describing this process in slightly different terms will make it obvious/

how to construct the algorithm. How do we compute an x
i

after all the xts.

.with-higher subscripts have been'computed? We do it In stages. First, we

,give xi, the value, 1,21,,,' then we successiirely,s4htract, awaf from the partially
r ,

,computedx.the- value of a
ij
x where j starts with 3 and decreases,

.4 down to, but.not including, i. You should verify this description for x ,
3

)c jand xi. Here, then, is the partial iiOrclierfr-fOCOEPdtinglxi

Figure 7-34

10

T

xi 4- bi

11
,

j' 4- 3 i3->
34-3 - 1

F

Xague.7-34. CoMputingIthe,value of x'

V
t ,

tt

b(3314.64:,

i

a
4

I

Oa.

At list

-thetely amount

providing for

i 1 4,- 3 !
i.> 1

i 4,- i- 1

11

F

4 j , l i > i

-

Figure 7-35 The back solution

the complete Gaussian algorithm is dqiand..' Tp5 finishi

to tacking of the back solution onto the, end of Figur_

the input and output. , This. is all- done iftFigure.

touches

3 and

r`

7-5:

o /
f(a

ij
,j= 1(1)3), i = 1(1)3)

(b
.i'

3 = 1(1)3)

k 4-1
k 4- k 1. k < 3

IT
2

j k 1

j 4- j + 1 I <
It'

3

aki akilakk

kiakk

5

4.7 k 1

4- + 1

6

j 4- k + 1 .

,j 4- j + 1.1
i <r 3

T

*8

4- a - a
'It 4C

- aik

,i 47 3

;4._ - 1

t

r.

1

11

I 4- 3
j > i

j 4-- j - _1

1r

Figure 7-36. Coinp lets Gaussian alzorihm foi;.

3 \squations in 3, unknowns

"

N

R

71-5

We have synthesized the Gaussian algorithm very deliberately, step-by-tep,

so that we do not feel it necessary to analyze ills flow chart. Instead, we
I

provide in Figure 7-37 a silhouette of Figure 7-36 with an,indication of the

Purposes of the various loops.

row

normalizing'
loop

r

the
. r4P back
(solution

9

/
I.

...

/
,

-iwsubtracting multipleS
of row k from all the
subsequent rows

rr

O

Figure 7 -37. Silhouette tf fiet chart showing decom-

position into several components

349

7-,

Exercises 7-5 Set A

1. Now that you have dutifully folloWed the preceding discussion, stecify

the minor changes in the flow chart of Figure 7-34 so as to make it

applicable to systems of n equations in n. unknowns.

*2. Draw the flow chart embodying the changes in Problem 1 and, while you are

about it, make the flow chart into a procedure. You must properly handle

the modified treatments of input and output and giv9 careful Atention-to

what goes into the funnel.. It is not required that you provide alternate

exits (even though their necessity shbuld arise) but you may do so if yoU

wish. The system of n equations in n unknowns and the corresponding

array are shown below,.

allxl a 12x2 a 13xn

a21x1 a 22x2 a 23x3i-

+ a
1
nx
n

= b
1

a2nxn b2.

anlxi an2x2 + an3x3 + annxn = bn

all alt a13
a
ln

b

a
822

a' . b-2-21 22 23 2n,
4

St
a
nl '

a
n2

a
n3

anal- b
n

-350

3:3 '3

g

7-5

Tracing the Gaussian Algorithm

We,are ready now to carry out an:abtual example working our way step by

step through the flow chart of Figure ? -36. You will need to refer to this

flow chart, frequently as you read.. You will also ,need paper and pencil, to

check the calculations.at each step. The equations we will solve are:

2x- y + 6z = 3

3X. 7 L7+ = 1

x + - 5z = 7

We can write our array in the form

2 -1 3

3 114 1

1 2 -5 7

The method of solution, you willrecaLi.,
consists of constructing an equivalent'.

set of.equations of the form seen in 7-32(b). The array for-this

second .set has the form *

1

0 1 w.

w

.1, w

4*4

where the' wts are that we are to deterMine. Once we know them, Ale back

Solution finishes the problem.
*.!

.44

,351

o

.

Afterf the coefficients are input in box O, we enter the iteration

box 1 of Figure 7-36 and set k -.. 1. This leads us to the iteration box 2.1

The loop around boxes 2 and 3 (twice) Ind out through box 4 divides the =Fibers
.

in the first row (except for the first) by 2. Recall that we know the first

element becomes 1 when we divide it by itself. As explained,before, it i
I

easier in machine computation not to actually replace the 2 with a 1.

'However, we will place a square around the 2 to remind us that the coefficient

of x
1

is,actua1lyt 1. After box 4 and before box 5 the array hes become:'

k = 1

Cd:

2 3 2

3 -4 4 1

1 2 -5 7

We enter box 5 and set
,

2. This leads to box6 where we set j = 2. Now

we lodp through boxes 6 and 7 twice andout through box 8. This looping

, accomplishes the subtraction of 3 tulles the first equation from the second

on the array elements in which we,are interested. We circle the 3 in the

second row because we know the coefficient of x1
in the second equation is

now zero. As we re-enter box 5 fillthe second'time the array has becOme
.

1 3

0 _5 7
2 2

1 2 -5 7

Now i = 3 in box 5 and we re-enter bbx 6-to loop'to bop 7 twice'ancl.

box 8. This accomplishes the subtraction of the first equation from the third

on the array elements we will use in bur solution. We will just Oircle the 1

in the first position of the third row to remind us that this coefficient of

x
1 ,

is now zero. Our matrix'has now becoMe

k = 1,.

ll

0

' 1
E 3

2

-5

5 -8
11

2

6.

;

,

i*

1

' / \ , k

.. . 1 A

We return to box5 with i -_- 4 and are sent back to box 1 where ,Ik be-

comes
I,

comes 2. Again we.1oop through boxes 2 and 3 an& out through box .4. accdm-
*,

,

. , e. 5,
.plishing tne division of. the last two elements ;of the secon, row by -1.-i.lt, As

352
,.,

:1-32
.#

2

. 1"

2
before, we place a square around the 5

in the second row. The matrix as
I

. we leave box 4 for the second g.me is:

3

= 0 ` 2

0 -8

Now we, enter, box 5 With) = 3. We flow on to box 6 with j = 3. The

196p from box 6 to 7 and out ttoughbdx°8 accomplishes the subtraction of
5
b times the second equation from the third. Again we circle the 2 in the4 2

third row because t is coefficient of x2 is really zero and the matrix no4 is

.k G. 2 7
2

5

13 2

Bask to box 5, i is set equal to 4 and we flow on to box 1 with ,k
' 4
becoming 3. Now for the last time we enter box 2 where j fails the test

:and we go on to box 4. After bdx 4 the

1

=, 3

cD

5
2

matrix isthiS:

3
3

a

2
5
2

1^

As we flow on to box 5 i 4 and fails the_test. Back to box k
becomes 4 and fails its test sending

Our-array has reached its final form.

ponents of the vector x.

us on to bdx and the back solutidn.

HenceforthiAll assignments are-to com-

. We leave box 9 with .1 = 3 and proceed to box 10 where

initial value

2Ix3 -

x3 receives, its

On td box 1L where j' is set equal to 3 and fails, the test, returning up to

box 9 where ,i is reduced to 2. In box 10',, x2 is initialized with the value)

7
2

=
5

7-5

Now one transit of the loop of boXes 11 and 12 give's

= _ (_ = 111
-s 13' 657 '1

the nao-value ,

The failure of the test on returning to box 11 sends. us again to box 9 whe're

i is set to 1. And now, on our last time through box 10, xi is initialized

_ 3
4

Two successful transits of the loop of boXes 11 and 12 with

give xl, succesil.y, the values

x 3 ; (, _?_) 51
1 - 13 g

/
and

1 111 366 183
75,=. 130 ;5.-

11,

When j is set to 1 on the last time into box 11, 'the test is failed and we

proceed to box 9 where J....As set to 0 and failethe test. On to the finish

=

r

." I

3 and j =2

lines In box 13 we are instructed to pint out the present values of xi, x
2

and x3, namely,

183 111 2

-Z

Exercises 15 ,Set B

. , .

Determine Whethei'the values computed for xi, x2 'and x3 actually

satisfy the equations.

-2. Make a trace of the flow chart of Figure 7-36 similar to the one just

concluded in the text for the system:

3x z = -7

2x 4y z = 3

3x - 5y 3z =

List the intermediate arrays at the same points, as done in the text.

it

354

3a k

7-5

Using the flow chart you developed 1,n Problem 2 of Exercises 7-5, Zet

for the solution of n equations in n unknowns, make a trace for the

system of equations:

3x
1

= 2x
2

+ 7x
3 4

- x, = 2

2x1 ± 3x2 - 4X3 + X4 = 7.

xi + 2x2 + 5x3 + 2x4 = 11

!ix]. + 3x2 + 7x3 - 8x4 = -2

Compute the entries of your sequence of arrays in-decimal form using a

three digit `chop.. (Warnirigl This problem is extremely tedious. It Should

give you ,the proper respect for a computer which can solve,.say, 100 aquations

in 100 unknowns.]

Partial pivoting

We have presented in Figure 7-36 the Gmlbsian,algorithafor the solution

of 3 equations in 3 .unknownA. And you, in Problem 2 of -Pbcercises 7-5,

Set A, adapted this algorithm to a procedure for. solving n .equations in' n

'unknowns. In both theseiflow charis'a difficulty, may. which we have rot .

yet considered.-
? .

In te normalizing part of the process (see Figures 7-37 and 7-36) wee

divided the k
th

row through by, a , Nrh4ch,we call-the pivot element. It

could.very welt 'hapen that at some stage akk = 0. What "are we to do in such

a case? Indeed, if
akk / 0 but is very small, then we are dividing by a

small quantity and we shall obtain a rarge result and we may very well Magnify;

any errors which are creeping into the solution. We gave an example of what
tgb

can happen in/auch problems in Chmpter, 6. There

equations

.001x P5r = 1

x t y = 2

We saw that if we Could use exact' arithmetic we Could get the.exact.tolution.

BirCin all compUting machines We are restricted to a small finite number of

digits and so most nuMbers'can be'represented Only approxjmately. For example,

if we are restri'c 'ted to 3-digit arithrtic,we saw iriChapter 6 that the order

of the equations used in elimination was most important When we divided the

we considered, the system of

(13)

first equation of the system (13) by .0901 we.obtained''.

x + 10000y = 10000.
.

.

855
, 5 0

- 7 -5'

Mr'

The elimination of x from the second equation ::ve

since only

chopped. Then y =-1. '9lbstitution Into the first equation yields x = 0.

Actually, the true solution obtained using exact arithmetic is

r\ 79990Y = -9990

.

3 significant digits could be retained and the results were

X = 10000/99,99, Y = 9998/9999.

.

We have obtained a very poor approximation to the solution.
At

On the other hand, when we took the equations in the order

x y = 2

.0001x y = 1

we obtained for the second equation

.999Y = .999

Again.we find y = 1; substitution into the first equation now gives x =:!..

NP
We. have tbis.timeAtal.nedAsoc4ppproximation to the solution. *

.

Thusr. one way of solving the system gives'very inaccurate results whereas

another method gives better results. It appears that in order to avoid aif-

ficulties of division by small quantities we should try to choose our divisor
9

-° to be as large as ofroble. This can be achieved by interchanging the grder

. 'in Whicli.the equdtions are written down. Of course, the order in which the
. ..

. ... ko equations are written has no erfebt on the true raliratical solution. On the
...

'other hand,'Tia have just seen that a change in the order may,give better com-

puter resultp. C6asequept1y,,we should be alert, at all stages ofotr algo-
.

' rithm, fof a change in the order which might produce better results. Inter-
.

*
. .changing the order of our equations clearly corresponds to interchanging the

. . of : . ..
.

. 11:.

rows of our arrays: , . e i

:

4 '

1 t .
..,4 °' ...4 . ' t

p
J,

'., . 0 r

K

,

1
it:

Ne

A

tN.-

C

t1 ut

t"

,
I

..
We will eXplain;how.this works with an example.

:rg

in

.
.

3 -15 8 4 9
.C)- Ejt, 2/- 0 3 2.

30
©
0 0

.

c11.

4 : 19.- -.14 ., pi
,,,-

t .: .
.r,,-11 21'' -.---'.-

,..;,......./..---'...27:2_,

'.

a0' 7-5

Figure In the midit of solving 5
"Ire 5 Imknowns

4

equations

- .
-a

,..

In Figure 7-38We are in the-midst of solving 5 equations in ''5 owns.

We'next want to eliminate the vakiable x from the fourth and fif hequationS.,
t , 3 -.

, Our next step norMally wodld.be to fiormalize the third row. Then we would- -\

subtract suitable multiples.ofthe no'malized.rcw from the fourth apd fifth rows.

' --:_Y7-,
But, first we look to sea whether we can make:a row interchange so. s to

get a larger pivot element. We look down-the third column for the elemen of
0'

.largest absolute value. But, we only look in the 'locked off portion of the
. . ._

first column as the first two equations havd already beenTi-oceesed and will

not be Used..pgain until the back solution. The Up.. e entries which thus come

under consideration-are 1 4 ands, -11. Of, these, -11 has the largest absolute

value, so we ihterchange the third and fikth.rowsof our array, as seen in Fig-
- .

-ure

Kp

-15 , 8 4 -9

FA 2.. 0 3 .

P-
O o

-11

4

1

2

6 2 . -3, .

2 9 14

.3 4 6.
t1

7 -39. After interchanging rows 3 and '5

. -And now we proceed to normalize using -11 as'our pivot element and to

eli.iinate x'.3 from the fourth anclfirth rows. The prOCess:that we }have inter-
.

'

13N4pd'here is' ealled."!Partial pivOting".

357

WIP

*Exercise 7-51' Set4C.

1. Your task here is to prepare a flow chart component fo partial pivoting

and to insert it in your flow chart (prepared in Exercise 7-5,,Set A, '

Problem~2) for the Gaussian algorithm for n equations in .n unknowns.

We remind yoUthat the pivoting.process consists of:

* ;
(i) searching the k

th
column fom the Alc

th
row downward for the

element'tat yields the largestabsolute value;

(ii) interchanging the row in which this largest element occurs with the

'kth , row.

In the event that your search in (i),yields zero for the maximum absolute

value, make a special exit for thiS Case:. The main flow chart which'calls
as

executed will then want to print'oui"the message,

singular". Introduce into your flow chart the

as _a shorthand for

for the procedure t0,_be

'system of equations is

special. notation
7

4-4 d.

..t.copy c

d copy
1404

1

1.36

2. Another method for improving' the Gaussian algorithm is called "equilibra-
.

tion". ,Its purpose le tqAirj,LnA all the equations to approximately the
, .

same scale., This is done by multiplying each row of your array by the

- . appropriate positive or negative polMr of two. This appropriate power
0

of -qwo'should be so chosen that the largest df the magnitudes of the

fa

-'''

aiiits in that TOW
9'
(nota bi) will be greater than

1
but not greater

i

than 1. [Powirs of 2 are used so that in a machine which does
P
its

.

.010.147 .

.,.

arithmetic operatiorcin binary no round error will be introduced.]
....

Prepare a procedure iorcarryAlg out equilibration. Also, prepare 'a

master flow art Which will call first for equilibration and then for

e improved Ggussian algorithm df .Problem 1. The main flow chart should

print out the_messige "system of eilua-dons is singular" in the case that
.

some row has all its ai Jts equal to zero.
. .

358

3,5 8

Chapter 8 -

t COMPILATION AND SOME OTHER NON-NUMERIC PROBLEgS_

8-1 Introduction
,41

_ In Chapter '7 we were concerned with problems that lend themselves to- -
I

numerical solution. We also know, from having studied procedures,for manipu-

lating character strings (Section 5-6), that the digital computer is potentially

useful in solving another .class of problems,' i.e., those for which the signifi-

cant variables and operations are other than arithmetic.

--a

There are, in fact,,a large nuMber ii interesting problems Ln this cate-
gory, For convenience we2call these "non- numeric to. suggest that,

for these, the numerical computation is secondary to the symbol manipulation.ti
We list here three lisportant examples in this category, although only the last

of these will be considered here.

(1) Simulation problems - where the object is to have the computer

imitate an actual process. 'With simulation, for example, a company,

can determine how' a potential product Would bell& under all kinds

of conditions withOut going to the trouble and expense,of building

(2)

prototypes.
I

retrieval - wherevthe object is to find theset of items,

certain descriptive criteria, in a large:yell-desoribed

. EXamples could be finding in the libraries of your

Information

satisfyinik

set of itat

state all books describiwmastadons and written by Wssians, or

finding in tWarmed fozecep all left-handed, blue-eyed melee `c
.-4

speaking Swahili.

(3) Translating a computer program written in a procedural language sim-

"'"'ilar to FORTRAN or ALGOL into an executable set of machine language
00

instructions.

The translation problem should be of special interest to us. The programs

which we Ave been running on,the computer are, of course, sequences of state,

ments which in turn are nothing more than'strings

computer has been manacling to accept our programs

(f.e4a6 strings ,of characters) and then comb' up
57

acters (sequences of machine Astructiohs) as the

of characters. Somehow the
5

as input 212012, analyze them

with other strings Of char -

result. Until now we have

assumed that this process is too complicated to ;try to understand. So we heYe

4W

-

essentially accepted the compiler as a 'black box", taking it-for granted,

happy to have the service it renders. In this chapter we shall take a more

detailed view of this black box.. Your, first step should be to review what we Na,

already leirndd about manipulation of character strings in Section'5-6. Next,"

in Section 8-2, we shall develop a few new %pole which are of use for symbol

manipulation, in general, and for language translation, in particular. Then we

shall tackle our main problem with proper preparation. In Section 8:3 we de-
.

scribe asimple but representative progra4ming language for which the compiler

is to be discussed.

Compilation of a source program to a target program can be thoUght of as

consisting of four parts: -

1. Prescan;

2. decomposition, of assignment statements to an intermediate form

resembling machine language instructions;

3. translation of all other types of staatIments to an intermediate

form also_ resembling machine language instructions; and

4. translation)from intermediate.formi to the target language.

Since the language statement is either an assignment tr is not, the second

and third tarts of this description can be thought of as occurring on an

"either -or" basis. Many, but not all, of the operations normally associated

with the prescan part will lie disclosed in Section 8 -4. The decomposition of

assignment statements will be treated in Sections 8-5 and 8-6. Thetranslation

of%therTes of statements.(step 3) is not taken up in this text. The trans-

.

lation frbm intermediate form to target language for assignment statements is
1.

not considered in detail because step 4 wilrbe different for each different.

machine.

360

36'0.

8-2

8-2 SyMbol manipulation

'4
In Section 5-6 we developed a procedure (chekst) which searched for the

occurrence of a given substring in a given string.' If found, chekst reports

the position of the first character of this substring. You may have wondered
of what use such a procedure could be. .

The authorship of some pieces of literature is in doubt; perhaps the
"

piece was published anonymously, perhaps rvords proving authorship ha4te been

lost or destroyed, or perhaps the literature has been discovered unpublished:

Often scholars are able to'identify the author beyond reasonable doubt, but

in some instances the study of scholars has not been able to resolve the ques,-

tion of authorship. In recent years it has been foundrthat, when all else

fails, subtle matters involving the choice of ds and: of forms of words can

help in establishing authorship. our purpose to go into the .question

of how this is actually carried out, rather-me would, point out that this type

of analysis requires such extensive study of the_frequency of occurrence of
. words and phrases that computer processing is required.

Example 1

Prepare a flow-chart to count the occurrences of each of a givenoset of

English words in a characteristring.g = (si, i.= 1(1)n) which represents a

work of literature.

Our first temptation might be to use the chekst procedure, that has been

,mentioned. Howetter, you will recall that another useful procedure was suggested

(Section 5-6, Exercise 3) for counting the number of occurrences of a subtring
A

in a given string. A flow chart for this procedure, called contst, is given in
Figure ail. The object of contst is to locate and count occurrences of one
substring C = (c.1 , i = 1(1)k) in the string E = (si, i = 1(1)n).

think'of each word in the given set of English words as asubstrings

we can'solve our problem
/
by-repeatedly calling on contst, once for each word in

the'set. This use'of contst is shown in Figure 8-2.

..> > 1

t.

8-2

t ;

ef,

.bOUNT 0

m (- 1

2

EXECUTE

,chekst (n,§,m,k,C,p)

4

.n = length/of text shorthand
.

S'= the string being examined,
i.e., (si,i=lcl)n)

k'= length of substring,

T= iihdr,thand for the sub-
gtring,being searched f4or,

(ci2 1=1(1)k),

COUNT = the.cdunt a occurrences
' (If a 'In

COUNT (--CCUNT +

111(-p+ 1

Figure 8-1. Flow chart of the contstA)rocedurt-

r

c

NOtibe that the procedure *ow chart for contst depends on the chekst
. ,

frow chart (Section 5-6),. Since we pow deal extensively Witt; strings of

characters, we adopt the shorthand notation S ttanding for the more explicit

i = 1(1)0 ,which we introduced in Section 5-6. Ws can 1:efer,ioa string

asia whole (by Si), or to individual elements of a string (as, for example, sm.),

or if needbe, to subs:trings (as\!si, i = m(1)n)). Third, even frith this,

shorthand, lists of parameters for our procedures will be pretty long. To help

minimize the confusion, we will tabulate the key symbols and their explanations

on each flow chart.

362

302

8-2

The work of literature to be-scanned is the character string S. Each

English word, the occurrences of which we will count, is to be C having a

length k. In the main flow chart, Figure 8-2, we let r be the number of
.

English words for which counts of occurrences are requir%d.
'

First, we input t e text and the number of English words for which 'Counts

are desired. Next, we read in an English word and count and print its number

of occurrences. This is done in a loop. The loop terminates after the counts

for r different English words are completecL

2

j Fl
j > r

4- j+1j

n = length of text

=`the.)string of text

r-= number of English words

k = length of an English word

C = an English word .

p ='count of occurrences of
C in S.

t

Figure 8-2. Flow chart to count the occurrences of a set'

off& r words in a text df ,n characters

363

8'03

,

Whaother basic operations; might we want to be able to perform on strings?

By analogy with the processing of numeric information we can expect that the

simple copying of information, that is, moving it from one place, to another,
N

would be basic to our faci'ity for handling strings of characters.

Example 2 1

We will design a general move pr8cedure to append, the elements of S

between s
m

and s to a "target" string Y. of length 2. -A self -explanatory

flow chart is given in Figure 8-3.

MO1tE(T,m,P;2,17)

- ,

S = original string

m = index of first element
of S' to be moved

p = index of last element
of S '1..cbe moved

J £,. = length of target string.

T = targt string

i = pointer for string 7,

Figure 8-3. Flow chart of move procedure

In the processing of text we often want to remove certain substrings, say

those that represent the so-called interstitial words, such as "the, a, an,

at", etc,. A special case frequently encountered is to remove a particular
kieg

single character that may be undesirable in the source string. One way to do

this is by moving. the parts of the substring wewant to keep, skipping Over the

interstitial words or characters we want to remove. We can perform this dele,

tion with a procedure similar to the move procedure.

364

II)

_

8-2

Example 3

Develop a flow chart for a procedufe called delete with arguments (K, n,

S, m, p, y). Delete appends the Mth to the pth- elements (inclusive)

' of the string S which has a length_n, to the end of the string T of

length 2. During the transfer delete inspects each character for equality to

the character .K, omitting the character, if equal. Finally, give i the new

length of T.

Operation of the delete procedure is pictured below:

1 T

POSITION m p n

S
:-. .1... e ...''. 1 , - : --;,-; . '','

...a

--.. 0.
'zi:S

POSITION

k

Figure 8 -4. Information trangfer'of delete procedure

The technique is to examine each character of S from s to sp, moving

it to T or not mo ing it, depending on whether the character being examined

is or is not K. Two pointers are needed, one starting at sm and moving

tosP' the other starting at t
21-1

and adVancing enos to point to
I
the next

available position of that string.

The flow chart in Figure 8-5 includes an alternmitdkreturn. If the it

parameters are illegal (i.e., p < m or p > n), cOtrol is 'transferred to a

boxl:abel in the flaw chart that%lls on delete. The bob label fs represented

'by y.- The statement of the problem does not call for this provision of an

alternate return. It has been included in the solution to suggest the good

practice of (whenever possible) verifying the logical validity of input para-
._

meters to procedures. The delete procedare will be used later in the text

'where the use of thevalternate return wiil he shown.
_

4Wi

S.

.

:L

8-2

410

defete K, n;§;rii,p,

i (m X
i 4- 171

i > p

V

K = character to t deleted

n = length of original string

S = source string

m = index of first element,
of E to be examined

p = index of last element of
S to be examined

= length of target stri(ig

T = target string

= a box in the flow chart
that calls on delete

i L- pointer for string

4

'Figure 8-5. Flow chart'oi delete procedure

In our next example we look at a aseful procedure that is'bimilar to

chekst but more limited'. It determines whether a given substring appeais

starting with a specific element of a string,, S.

366

30.6

8-2

Example 4

Develop the flow chart for a proc dure called match that tests the equality

of a substring of S beginning at, s
k

th a' string P of length /. If

evality'exists, set a pointer m to the'indeN of the rightmost matching

element in otherwise, set m to zero. Figure 8-6 shows the flow chart.

mmtch(Er k, 2, P, m)

4

j (-- I

j >2
j (-- j+1

= the string to be
inspected

index of,the element of
S at which inspection
is to start

length of the substring
to be compared with part
of S

the substring to be
compared with part of E

m = pointer ,giving "the result

of the'match procedure

i = local (auxiliary variable)

j = local,(auxiliary variable)

k

=

6

Figure8-6. A flow chart of the match procedure

Exercises 8-2

-

Assume that a character string S of length n is in niMputerts

memory. Draw. flow charts to solve Problems 1 - 8. In each case your flow

,ohart should call on one or Snore of the proceddres developed in Seqtion 5-6

or Section 8-2 that seam4 applicable.

f. Determine if the 'character "A" occurs at, any place after a "B". If So,

return a pointer to "A" (set p = the index °A").
at

36'j

2 3(37

A

..

2. Determine if the substring "TH" occurs at any place after the substring

"DR".' If soreturn a pointer to "DR".

Determine if the characters "A", "B", and'"C" occur in that order, not

necessarily adjacently. If so, return a pointer to "B". ,)

4. Identify the most frequently occurring letter in the string.

5. Find Out if any 1e4er5 t3f-117alplibet occur exactly three imes and

identify them.

6. If 'LB" immediately follows "A", substitute "X" for each such "B" in the

sing. Report the count of such substitutions.

7. If the character "A" occurs after the character "2", remove all inter-,

veiling commas ",".

8. If tile string begins with the substring "NOW", remove that substring

O from S- .

9. Use the move procedure to modify the flow chart for the delete

'ocedure (Figure 8-5). Comment on the advantages or disadvantages of

your result as compared to Figure 8=5.

10. The move and match procedures shown in the text omit the length, n, of

the string S from their parameter list. Why is this possible in thee

cases? Can the same omission be made for other flow charts in this

section? Which ones? Do youhink that this omission would usually be

a good idea? Why?

368 a,

ti 8

....

8-3

8-3 A language to be translated

Translation of a program from procedural to machine languaNOs actually

a form of symbol manipulation. The process is complex, even fol.-simple proced-

ural languages. A compiler for a language having many different statement

types, great flexibility iii writing expressions and/or several ways to define'

and call functions, proves to be a rasher- complex program. Still, the basic

ideas behind translation from a procedural language to a machine language are4,:f,4

not overly complicated and will be demonstrated for a simplified "make believe"

language called TYPICAL. TYPICAL is based on our flow chart language. It is

a very simple language but is surprisingly representative of most procedural

languages.

Description of TYPICAL

Card format

(,

".c,4

1 All statements will be punched on cards in "free form". Blank

columns trill be ignored and a statement may begin and end'at

any card column.

2. Alphabltic literals (i.e., strings of characters between quotation

marks) will not be allowed.

3. A semicolon (;),Jiast appear after every statement.

4. A statement label must be followed by a colon '(:).

5: All statement, labels ani variables (collectively called identifiers)

must begin with_ -awalphabetic character which be followed by

any collection of alphabetic characters and/or digits (but no

special characters).

Examples of assignment,s,tatements are shown irf Figure 8-7.

/ST 1: Q

-,-C+D) ; Y ANYTHING;
-,, LABEL Z(A+B)/(

Figure 8-7. Examples ofLthe appearancegof assignment
statements on cards (The arrow'indicates-
the order of the cards.) 7

0

368 6 9

4

83 oh

Notice that statements can extend from one card to another or several state-
.

ments can be on the one card. Note also that the blank spaces may appear

anywhere including at the beginning and end of cards and,eien in the middle

of identifiers

The assignment statement: An assignment is essentially whatever has

been written in an assignment boktogether with a statement label, if needed.

For our purposes some speCific assumptions and restrictions will be made:

-

all,aYithmgtic is done with "real"-numbers,

'2. . special symbols ."(," for assighment and "t " for exponentiation

will beAvailable,

arithmetic operators /, X, t " and the use f parentheses

are allowed,

4. subscripts are not allowed,

a
, 5. signed variables such as. (-Z) are not allowed,

6. function references such as '1/-- or in are not allow0C)

Examples assignment statements permissible in TYPICAL are:

Z (A + (B X (C - Dt 2)));

OILUIATEr AVERAGE 4-- (X + Y)/2;

LABEL Z3e.-85--; etc.

Tbe,00nditional statement: The silhouette of flow chart boxes has been

used to convey information about the kind of statement placed in the box.

For the assignment statement this info on is implicit because of the

presence of the left'- pointing arrow. For o er statements this information.

muaire transmitted via an appropriate descriptive or key word. We choose

the-following form for the conditional statement: ,

IF (relation) THEN label;

.370

37 0

".4
a.

- .c:
Poi; example,

4

-

. . . - I

IF (A > 0).TEEN CALCSQRT; .

- TEST: IF (I '=...3* + 7.1 THEN LABEL 85;
r

"TESTB: IF (B = 0) THEN DONTDIV; etc.

8;-3

The Icey word "IF is used to identify the type of,-..statementtl The ,relation
t be enclosed. in par entheses. Any simple relation may be-used involving

one of the six relational SYmipOls (>, Z).- The word "Thu" is
added `simply for reedability and the label preceding the semicolon identifies

e J.the statement to be executednext if the relation has the value true. If' theee

relation false, we assume the. next statement in sequence 'will be the one
executed' next. ..

Other statements: Ailirge variety 1c:o other kinds of statements' are
found in actual 1DrogramadAg languages. Our task in this chapter;wili-be'...
large enough (and realistic_ enough), if we limit ourselves to the'follbWing:

-START corresponds to the- "star!, box", performi no operatiOn but. . can have a Iabil which would be the 'ira4esof the program.;

0

9 "-STOP corresponds to the "step box', in tes the end of calcu71K'
Clation and either sttps'they computer or returns control.. :.-

to a monitor program;
,

;MD -corresponds- to/he /input box'', to be foLloWed by the input
-list. N '
corresponds to the "output box ", to be folloWed by the- output

.22is . ' .

, .

f

GO rTO iloes noti,correspond to any flow chart 'box._

Iunconditional 'change in the execution sequence
merit the 10e1 which follows 'he words "GO

It directs an
O
to the "state-.

ir

L.

;We aorliot. prohlbit,the key word fro
identifier:-;Many ctgal,p14ogranrai

° striation in'th-e4. ltertest o
avitrcd confuSpn when .th

in a° ue fider
..1, 3

4 does not.torrespond to any flci; ah.Srt box: 'It- marks- the ,
.physical.end of- the deck of' cards1 COntainizrg the prografa.

!

, -
1. 1 , -.--

'' o. ,
f ' \,

a more
lame st

1,k
being .used in another con
languages do. in fact,
ficie t c operat

cam mean 41.

e

3ct asi; any
ch a ia-7
r simp.1.7

things

fi

.1

V

o

.

8 -3

Example .'4

We give in Figure 8-8 a TYPICAL program corresponding to the process given

in Figure 3-7 for tallying low, mid and high. grades.

1

2

3

4

5

6

7

8

. START';READ,N;

COUNT- 1; LOW;-0;.MID+- 0; HIGH-. 0;
.

LOOP: READ T;

-IF (T > 50) THEN TEST2; LOW r- LOW + 14 GO TO INC;
.

TEST 2:. IF (T > 80) THEN GO ON; MID'- MID + 1; GO TO INC;

GO ON: HIGH1T-'HIGH + 1; -"N

INC: COUNT'- COUNT + 1; IF(COUNT < N)ITHEN LOOP;

PRINT LOW, MID, HIGH; STOP; END;

Figure 8-8. A TYPICAL program

The lines in this program are numbered only for our references,
IV

Line num,'

bers are not a part of the program. Capital letters have been us7d. throughout.

(The alphabets of most pfOpeddral languages are unfortunately'liniited to cap=

ital letters.)"

p

1

Notice the frequent appearance of semicolons; a semicolon at the end of
,

semicolons;

every statement, in fact. Line 1 has the start statement end a read statement

assigning to N the number of grades to be tallied. ,Use of the semicolon
I

allows us, to put sev ral statements that may be associa d with ea h other on

the same lies. Of c urse, the programmer could put eac statement on a separate

_line. it is mainly a matter of'taste.

Line 3 illustrates a statement label, LOOR, follo d Wa, colon: This
,

statement reads a. card containing a value which is assigned to ,the variable T.

Fbr each test value T lir '4 and 5 determine whetheithat graae is
..

in the LOW, MID or HIGH group. The relations used on lines 5 are_JLe

reverse of those used in the.flow chart. This reversal is s)gg ted by the,

fOrmof the TYPICAL conditional, statement. TWreat of the own

.';;hould

1 I

. .

372i.

7 b''IL, ,

O
8-3

Two of the statements in TYPICAL do not correspond to any boR of our flow

chart language and, indeed, are not necdgiary. They are included simply be-

cause, ih praCtice, many languages do have such statements. Strictly speaking,

a GO TO fs.unnedessary since a statedent of the form

IF (A =AY THEN label;

has the,same effect because A = A is'always true. Ari END statement is not

necessary because its Only purpose is to mark the end of the deck of Bards

jcbnatining the program. The-same purpose could be achieved by asking, "Are

there more data?" since these statements are data to the compiler program.

Frequently compute'41rs-(esPeCially larger ones) use a "monitor" which is a

contra Program over the operation of the computing sys '\em. Monitor programs

will sequence the various jobs (Probata.yAach job' is prepared by a different .

person) 'to be performed.' They will, identify whether the job is a machine ldng-,

uage execution'or requires compilation (and if so, in what language).. They ,wills

select the necessary compiler program and library programs. They will time the'

length of the job run and produce whatever statistical and aeount1ng reports

are required: then operated with a monitor program, the computer rarely stops.

STOP in such instances doesn't mean "stop the computer". Instead, it is an

order to release control of the computer to the monitor program. The monitor

will then be able to accept the next job which is waiting to be processed. jfie

function of the END statement can also be assimillted in-the monitor program.

Nevertheless, most languages require some end-of-program indication as part of
the prograM.

e)'

37Y'

l

to.

*:1,1

8-4

8-4 Presean (the preliminary steps of a compiler)

As we shall conceive of it, the prescan portion of the compiler identifies

statements as to type and arranges statements into a standi..1"474to facilit*

further processing, such as decomposition ofAssignments. A major function of

prescan, which we gloss over here, is.to analyze each. statement to determine

if it conforms to the syntax (i.e., grammar) of the source language. Actual

compilers frequently contain prescan diagnostic programs which can produce

numerous-kinds of messages alled "diagnostics") to name syntax violations.

In the compiler we are discussing, it is assumed that all incoming statements

1141re been properly Written,-admittedly an unrealistic assumption. e

Consider, now, what happens when ...a program written in TYPICAL is to be

translated. First, the cards containing TYPICAL statements are read, one at a

time, into the computer. Each card contains a string of characters. When a
_ .

card is read, its content is assigned to &string S in memory- _When the next

card is read by the same instruct , its content is also assigned to ,S,

destroying what was read from the pr vious card. Therefore, between the read-
,

ing of successive cards into the c uter we should scan S, saving whatever

parts are needed for further proicessing.

The natural subdivision'of a prOgram to use in processing is the, statement.

This means that the string of characters must be scanned for the semicolon. If

a semicolon is4not found, the statement must continue on following cards. If a

semicolon is found, the statement ends on the current card although it may have

begun on an earlier card. Figure 8-9 illustrates a few of the ways a complete

statement might be assembled from one or more cards.

Wheri the semicolon marki g the end of a statement is fbund,;.its position

must be remembered since the ext statement could begin in the next position of

the same card, as, for exampl , on lint/1 of Figure 8-8. DuTing the' rocess of

assembling the string T from the one or more :g's, we find it re tiireli 4,:,

convenient to inspect the characters being moved for the purpose of eleting

7:tblank spaces.

I

I i

3 374
go,

c.

4

S T A T. E N_T

, Ty

STATE MENT

4-4

4

T

Figure 8-9. .Assembly of parts of a statement which have

been read from one or more cards

Example (Assembly

We will prepare

of statements); '

' .
a flow chart fora prog an to read successive cards con-,.

taining TYPICAL stateme4ts, to move '(and ass mble, if necessary) a single
. 'stet u .for !'safekeeping ", and to eliminate blank spades during the move-

process .

A general flow chart like the one in Figure a-10 is,trequently the first

stage in the organization of a problem. The obje is to show the overall
flow of inf tion without concern Ifor detail) 4e will study, this flow char

critically to see what tit dOei'do and what it fails to do.

a

1,2

4 ,N

f.

1

Initialization

S

3

Is there a semi-colon
in

yes

5

no

Move the completiOn
of the statement to
T, deleting blanks

Is this statement "END"?

6 1

7__

,no

Output T or continue
transl tion of T and
outputrthe results

Get ready for the
next statement

- ,

Figure 8-:10. A genel'al flow chart or
,

, .

i asseMbling i PICAL statements
/

q
,

V
C

N C . k,
4

, l
, \ '',

\

. 3/6
W

' .

--]

Move the partial
statement to -T,

deleting blanks

yes Stop or
go to -ne

phase

O

8-4

Box 1 is intended to provide for assignment of initial values to

counters, pointers and whatever else needs setting at the beginning of the

process' The details of initialization arefilled in as the details of other

boxes in the flow chart become known. (Many people habitually include .such,..

a box in a general flow chart'ds a reminder that initial values invariably

willipeed to be assigned.)

Box 2 reads a card', assigning the content of the card to string T.
Each time a card is readhe previous content of S is destroyed.

Bg3 asks whethet a semi-colon, indicating the end of a statement,

appears in S. 'If there is no semi -colon in g, the statement currently

being assembled must continue on the next card to be read. In this case,

Box 4 moves the part of the, current statement which is in S to T with

the deletion of blank spaces and the flow chart returns to read another card.

Box 4 is the type Of job for which the delete procedure of-Section8-3 was

d6signed.

On the other haAd, if Box 3 does find a semi-colon in S, we know that

the statement currently being assembled has ended. whatever part of the

current statement is in g" (whether it is a complete statement or only the

"tail-end") should be moved to T with the deletion of blank spaces. This

is done by Box 5.

When Box 6 of Figure 8-10 is reached we know that an entire statement

has been assembled'(ith spaces deleted) icy T. Box 6 determines whether

the statement assembled in T is the END statement so that & transfer to.

Box 9 can be made to stop (or go on to the next phase of the program).,,,
A A

It the .statement in T is not the END. statement, we would .want to go

through the same process for the next statement. Howeier, we must first do

something to preserve the statement already in T (lest it be destroyed by

the next statement). Box 7 indicates that T might'beoutput or the compiler

,might be orga nized so that further processing could be done before "if is
output. \That is, Box 7 could stand for a major section of program.

V

Box 8 is our reminder4like Box 1) to be sure to do any-incrementing or

to set any pointers we max Teed before returning, to Box 3 to evsmine44at is

left of S.

Figure 8-11 shows how the major pa3ts of this floi.;.chart can be detail A.

...,0`

/ 4

tCutput should be in a machine readable farm such as punched cards or
r

magnetic tape.
, :
X '

t 1 1 1 .),

i (

377

0 V 31:i.7 _.,,i,_

.

During a first reading you may wish to skip over this detail and proceed'tO

discussion of the next phase Which begins at Example 2.

te.

Box 1 of Figure 8-11.has been'Aivided into two parts so that each time we

return to read another car.d we_ can set a pointer m 'to,the first character of

S. A card is read filling T with .8o tbaxacters in box 'CThe chekch pro-
,

cedure is used (box 3a) to search for a semicolon in T and the delete proced-

ure is used to develop the target string T, whether4'Or not the semicolon is,

found. Boxes 6 and 7 are not detailed

)

/ 378

la

n 4- 80
2 4- 0

lb

-2

1E CUTE

chekcji(ii,7,ia,"; ",p)

S =. source string
T = target string
n length of string E.

2 = length of string
m = pointer spanning

, Of 7
p = pointer marking the

position of a semi-
colon

= blank space

EXECUTE

delete (nou,n,E,m,n,/,%box3.0

EXECUTE -
delete (V', n, S,m, p,,2,T, b ox.10)

e

4'

41,..",ti

I

led flow chart fo .'1

kto.-Ine014
I.

1.. _0% .

t

1

8-4

We leave this example unfinished, but we hope the interested student will

'Wish to complete it.

_Example 2 (Identifying statement types)

A compiler must be able to tell what kind of statement it is inspecting

so that the appropriate procedures can be used in Its analysid and translation.

In this example we will show how the identificatioNpof statement type could

take place.

In box 6 of Figure 8-10 we have already raised the question of identifying

an END statement dition, we now want to identify assignmentetate,nents

and others such'as STOP, READ, etc. Box 6 of Figure 8-10 could be replaced

by Figure 8-12.

no

6b

Identify the statement
type and-indicate it by
a value of an integer i

4 16c

yes

:

6d

Indicate assignment by a
value of an integer i

1,
Does the value of
indi te an END

ement?

yes

no

Figure 8 -12.

I '

An amendment to Figure8-10 to

the type of each statement
.

identify
.

4.

380

3.8
i ;.--

. ,
1`

1 .4,,- ...

8-4
44

,

LiAll statements, except assignment stiatementa, are characterized by descrip-

ive or key words. Therefore, it is natural to iden`ti 4. Y the assignment state-
-1

ment (by looking fdr a left-pointing arrow) separately in box 6a. The result

of the identification will be to give some value to an integer4i. For 1:uple,

i

...

.
.

..if the statement s an assignment statement, we can set i to zero in b 6d.,
it

Box 6b has to)ovate the key word for'each statement. 'This.ls easy since
I -

it starts either at the beginning of the string or immediately after the colon

separating a label from the rest of the statement: Once located, the key word
,.. .

.:*,is to be successively compared with each of a liSt of permitted key words._
-.-

When an equal comparison is found, i can be set equal to' the index of the
' ?

vi. \fr
list of permitted key words. The details for these steps, given in Figure 8-13

and the next paragraph of text, may be skipped'on your first reading.

At this point you have seen enough flow charts similar to Figure 8-13

that little explanation should be needed; especially since it corresponds

L. clopely to Figure 8-12 anethat has been discussed.in the last two paragraphs.

The me really nesr'thing in:this flow chart is the reference (in box 6) to a

list of strings (key words) of different lengths. In: the initialization,' or

bdilt into the 'program as constants, there must.be-e-definition of- the u

and Wi (1 < i < 7). Figure 6-13 assumes that we have defined

W1 4.- "END" and u
1

3

so that the test in box 8 isthe actual test for'an END statemerit,;i.

.

#

O

5:k

rya"t 7+

- 8-4

4

3 1

10

EXECUTE

chekeh(2,g1,;.,":",q

q q + 1

1

i+1
i > 7

NO

iF-

EXECUTE

match(gT,q,ui,gi,r

r

IF

a

BOX
7 of FIG
8-11

= lehgth of string *if

T = string containing
statement

i = integer set to indicate
type of statement

q = pointer.

r = indidator of success
of the match

17, = i
th

descriptive word'

u1.4 length of Wi

."

Figure 8 -13. A de 4.1e fIor chart for them
identifid tion

, 1

I I .

nt type

e.

1

8-4

- When the computer is asked to scan and analyze each statement (especially

assleament statements) it will be most convenient if we cal.have the statement

look to the _computer as a string of equal 'le gth elements,'each occupying, for

example, one word in memory. Eactielement s uld be a unique item or maybe

(in the simplest sense) even a single uniquecharacter. The way it is now, the

elements of a statement can vary, in size (number of characters).' Thds, key

words have different lengths and so do identifiers, like labels and variables,

and so do constants.

A straightforward way to make this change, is to replace each item in a

statement by some unique character. For example,

%Iv

could)' replaced by

where

Zebra 4Alpha + (2.5/Beta);

Z 4- A + (C/B);

Z replaces Zebra

A replaces Alpha

places Betao'

C replaces, 2.5

Clearly we won't be able to replace many identifiers if we are limited to the

26 letters of the alphabet. Additional codes for string elements are needed

and can be defined but we will not worry about them because the cotes often,

depend on the characteristics of the computer used. As cane simple example of

such a, code we could just braclset the identifie'r withia character no 'per-

mitted is TYPICAL source programs and so clearly,distinguishable (e. .2 the

dollar sign).
*

In addition to the'desfiability 'of being able to refer to an identifier

as a single lement of a string of'elements, other Characteristics of the

identifier can Profitably be coded in the new symbol. ExamPles of such charac-

teristics are whether the identifier is a real constant, an integer constant,

a real variable, an integer `variable, etc. For the purpose of this explanation,

such coding,q estiona are an unnecessary complication (althoughlu eful n

practice).

v)383

- 8-4

v

Example 3 (Replacing an assignmen1 statement by a string of equal-length
elements)

'.--,,

. .
Prepare a.fAy, chart for a libtess which substitutes a unique internal

/'

ideAtifier for eaA distinct external identifier of an assignment statement. M
.

t,

Solution of this example problem. is best reached by the same kind of
,

process wi'have used before. We first sketch. general flow 'then refine

the Various boxes until we haVe a detailed f ow chart. Ca7:tm:;'

1 .

We will want to produce a table shovin the correqohdence between inter-
,

nal and external iaentifiers. 'Note that the extern* identifier may already

be in the table when it is encountered..in the statement so the table of
.

corres-
J

pondence has to be examined Before we can assign a new internal identifier.
, .

In scanning a statement ftom left to light, only,certain s n ols can

follow an identifier. We list these and call"hem nibolatots":
/

+
..+4K

, .

Notice the left parenthesis is not in this list.- The problem is to search for
4,

these symbols which isolate the intervening identifiers or constants. When

found, the identifier or constant will be replaced by an internal identifier.
4* .

What happens when we encounter a left parenthesis will be explained later.

Let:

T be the assignment statement represented as A string of length n.
. 4r)- _

G be the generated string of internal identifiers.
, . -----

_.

EXt be the lift of external identifier*4 each identifier. being a

different string of chatactersNand not All the same--length.

EXt be the kth *- string in a fistof external idegtifiett
,---

having a length dk.

c

Int
k
be the k

th
entry=in a, list (Int) of internal identifiers.

.
,

,

DEL be a string of length 9, containing the nineisolators"

I
"i be a scanning pointei'on T. .

,...
-R.P.,.

,i'

' -

11

j
I

be a place-holdihg pointer.on T. t
,

i k be a folinter indicating the cUrrl#t length Of EX (or Int) .

I

r

$
--",

length
.."

G.
. .

I be a pointer` indiaating the: pbsition og,u. / ,

.

,

....
i' //

\

C

.4sy

384
r ,

- 8.11.

A diagram of information fio011%gure 8-14, may help in illuminating the
problem-, The originalt string,/T is to be scanned until the first isolator
(in TYPICAL either : or

k
is encountered. The first' external identifier

is placed in the list of external identifiers (Ext) if -is not already inc\
this list, and the corresponding internal identifier (f Int)jbecoies the
first element of ihe generated string Z. The first isolator, "4-P in this
case, is then transferred directly from T to G.

The scan.of T continues until the next isolator is fou In this case
it is "X!'. Remember, a left parenthesis is not an, isolator. e miLst then ask
*hether or not the character immediately following the previous indicator is.a
left parenthesis. If so, it is transferred: to Zi_. and a pointer moved to the
next element of T. The same question (left parenthesis?) should be asked
repeatedly in case there are nest)d,parentheses.

When that character is not4
a left parenthesis, it must be the firit character of an external identifier.

The identifier is then entered.into Ext (after checking that it is not a4eady
n the 5:76-11st).

With th>r.Cture in mind we can better understand the general flo* of
Figure,8-15. The transition frOm the general flow chart to a detailed flow

, chart is a process of deciding how to implement each *statqment
and each ques-

1- 7 -1
detail. In a problem of this Size, it can be helpful to use an inter-

.

mediate stage in which the easier implementations are specified but the, more

complicated.implementa4ons are left as- general questions or statementp. An
1

intermediate flow chart ishown next n Figure 8-16:

After studying the general flow chart in Figu'i-e 8-15 you might find it

more profitable to skip tLe'details (the rest of Section 8-410 and return to it
during a second reading.

O

1-

3850

'

ti

.... ,. -,a, M..m. 0../ o.... -,-_,,/" ,... ...r/ ., a'

,
-.' ,- v.'',. \/ , /7 /, -... ,,--.
, '-

.P.'.
'. >/ / / /,/./ / ../ / / % // / ./. / /

/ / / /' / / ./ / / / // / / / // / ') / /
' / / /

/Il / / // / / 1
/4 / / / A --'`,-, \/ / / /

/ /. / / // / / / /
1 / 1 1 /

/ / / / /
/ / / /// / / 1 -/

/ / / / I
I / / 4E

I I / i i

I 11 1: 1

\ \
.0. 1

T

*s...

.

Ex Ti ((, ExT2 .x mer3 ; _ _

INTa 4- (INT2 X INT3) ,),

\ \ N.. / a"'
..., ..a .,...

\ , .'" a. "... a" .
.... ..,

:''' ,i.

...

a- ""..
es "''

a

Figure 8-14. Diagram of information flow

for. Example 3

f

1

Initialization, that
is, setting of any
initial values such
841 B 4- 1 and k4-1,
i 4-2, etc.

2

1

Is original string T
completely scanned?

(

no

yes

,.4

Is t. an isolator?

yes

no

8-4

j =-pointer indicating fit
possible element of
Identiiier in. T.

k = length' of Ext or Int)
list

= pointer, scdnning 11",
for,isolators.

= pointer indica g the
next position off' G

assignment statement
(source string)

G = generated string

Movj to next element
in T -4,e.,

i 4-i + 1

Is t a "("?

'no

7

Is the substring Trom tj to '*'\
t1_1 (incl I've) 'in the Ekt list?
If so, which ne?

6)

yes Put "(" ingenerated
string (at_- g2), A117_

T'"?---crease -Pointers j

and

Increase.list length k and enter
the subgtring i? EXtk. Be,sUre
Intk contains a Unique internal
identifier.

tkft
9

string at
e genera e

11- 1

k...7-

,Adjust.pointere
as needed/ e.g.,

A 4-- + 2

i 4-4 + 1

t

it
Agure 8715A

10'
Put t into the
generated string
at g241.

0

yes

'a

12

a

Put the corresponding

internal identifier
(fromInt) in the ,

generated string'. at
gt.

.r

General flow chart for Example 30

387

of

.8740

1

3'

2

(i >n

'Ng

EXECUTE
chekch(9,IS0,1,ti,q

U

an. 4-

T = source string

G = generated string

i =pointer scanning T_for '

isolators,

j = pointer indicating first
possible element of an
identifier in Y.

,

k = length of Ext (or Int) list

4 pointer indicating the-next'.
p9pition of G

p = indeeOf identifier,f'oundto
; "be already preserit'in Ext

n =length of.stTinja

ISO = string-of isolators

7 8

9-

IS THE SPESTRING 1?kom tj TO ti_ YES

((INCLUSIVE) IN THE EXT LIST?.
IF SO, LET p BE ITS INDEX.

NO

j 4 j+1.

-47--2+3,,,

13

it
10

k 4-- k+1

EXECUTE .

move-a,,j,i -1,1 EXTk)

16

15

'12

14'

g2+14-

Iffp

1

'

Figure . Intermediate flow

, k.

3 z'yt.3

,

chart ,,for Example 3.

b

t

a

4

e

8-4'

........---- ,

The way that the chekqh-prOaedure,is used, n. Bak 3 of Figure 8-18 is of
.

some interest. This use of the chekch procedure is different from other

uses of it we have seen. In this case we are trying to find out whether an

eleai of unknown7value is one of a set of known values. Previously. we

have used chekch to find out if a known element, was in a set of unknown

values.
O

Actually the only undetailed box of Figure 8-16 is the questioyf

w ethelk.the substring is already contained in the Ext list of strings (in

Box 9). You will find the match procedure helpful at this point. When we

do try to give a detailed chart for this box we discover a need (extremely

common when drawing a'"complicated,flow chart) to Vow the length:of' each

Ectk string. Even though these Lengths, dk, have not been provided for

in Figure 8-16, they are

replace Boxes 9 and 10.

easily accommodated by the following alteration to

.

a,, <-21

.

, ,--> i..

I: <-- p+1.

p
10

-")

o r".

figure $-17. Detailed insertion 't(5 domilete Figure 8-16
,

Insertion ,of Figure 8-175into ,Figure .8-16 'gives a detailed flow chart

solution.

_

38Y .9

,

4

8 -5 The Decomposition of Assignment Statements
* ,

A Compiler develops a sequenceof instructions in machine code for each

statement o' ,the source languagd program: In some cases, such as the tiivial-,

case Of'a STOP statement, being transfpried toa,"HLT" instruction,' it is easy

to see how this trarslaflon is ddne. It is even easy to see how rules can be
, e

stated so that a simile assignment statement.can lA automatically decomposed.

For.example, a compiler which translates from TYPICAL to SAMOS, could take the

statement:'

:

t : Zf-A+ B;

and decompose itinto

['UM LDR 000 AAAA

ADD 000 BBBB'

STO .000 Z7

.

-where LLLL, AAAA,' BBBB and ZZZZ are internal.identifiers for

`Z respec4veljr., One can also see that LLLL; AAAA, BBBB and
s ,

associated with definite addresses in memory in

the final traftslation might be,

r,,A, B and

ZZZZcan be

some organized way so that
im

14.

LOCATION OPER INDEX REG. ADDRESS
L A

1492 LDA'. 000 1201

1493 ADD 000 ,1202

)1494 STO Odb 1216 .

Figure 8:18. SAMOS Imftructions for L : Z A + B;

It is not so easy to see how one can'find an 'algorithm to decompose asy
*A , 4

large, messy (but properly written) expression such as
9 , . ° .

, , te

. - z (-..., ((X' B 't.C)./C 1 2- (B - A))/((,. 1 2 + B t 2) t 2
. t , ,

into.a series of machine steps.'

question is-suggegteUin4ection

Basically the problem is to

to take place. ,The problem of-a
0

nearlyIgo) if we could discover

Where would one start? One approach to this,

2:4 and amplified in Appendix B. -

-1'decide on the order in which,.operations'are

of opeations.

, 1

' /
Utomatic decomposition would be solved (or

an unambiguous way to determine the ordering

,

re

Exercises-134-% Set- A ' -

List the or which you would do the operations
er

followingc-ciden.hfy the reasons for yoUr choice' of orddringa:
_-------

, ,
--:------' (ar A+BXC u

for each of_the

(b)

(?)

(d)

(e>

(f)

(g)

O.)

(j)

4 //.,

A x B .0C

(A t'B)X.0

A x (B +

A +BICXD'
A + t (C x D)

(A + B)T C,X D

A IB+CXD
A t (B + C) X D

. f.

'A t (B + C x

Two potential-Methodical approaches for order ng the operations appeal

possible. (1) We could try to fir ;.s. way to add a aufficient_numberof garen-

thetis pairs, i.e.', to fully parenthesize anaupiesaion, so-that precedence

rules for operators would not be important. (2) We could use the precedence

rdles,to eliminate 'parentheses entirely. Both approaches have been studied.

The second'.(that.of eliminating parentheses) has turned out to be superi9F

since it is not only more efficient in ,operation but it is.also aesthetically

more- pleasing. , '4

It has long been known that expressions could be written without phe use

of parenthesest'. The technique that we will use is 'called postfix notation
9

since a binary operator is written after (post) its operands.. For example,f

0
a + b is written ab+

0 'a'Xb is written dbx and so on.

tA Polish mathematician, Lukasiewicz, first defined such notation. Consequently,
such notations are commonly called "Polish notation" or "14asieNiAcz notation".

391

3.9 1

-

8-5

Q
To illustUtte.coPsicises. 8,-5,-(-a) through (d). In.postfix notation,

A + B x C is written,as ABCx+

A X + c' is written las ABxC+

(A +4B) x C is written ,AB+CX

-) A x (B + C) is written as ABC+x

Exercise 8-5 Set)3'

How would the exPressigns of Exeicise 8 -5, Set A, (e) through (j) be

written in-postfix notation?

,
When an expression is writt n in postf...ix notation the ordering of opera-

tions is uniquely% determined by their left-to-right order of occurrence. For

exemple,..we claim that the (more pleas'ng?) expression,

ZAB x C+ 2 /BA--A2 t B2 t 2 tb-
.

is the postfiX form of

((A x B + d)/c - - A))/(A:i 2 + B I 2) I2

The postfix form may look even worse to you because you are not used to

---seeing'f:xpressions_wzikten_this way, *rertheless, its meaning is unambiguous

It tells Us, reading it left ;to right,, to: Accounts for
i

1. multiply A by B ABx

2. 1 to 'this add '8 . ,ABXC+

3. save that result (call it,d),and square 'C C2t

4. divide ,a by the square of p. 141vNe2t /

,

-

5. save the result ae a and subtract`

A from B

---1;-- BA--

'

.
e

etc. (The student should-complete this list of instructions.)
.

-Formalization of the rules for the interpretation of any expression

4 .

written in ,postfix notation is riot difficult. ,

+

s a is o r es: "
,,,

1. Scan\ the strl.ng fi, lt to right to find the first operator,
- ,

\ '

'2. Execute, that operation using the two immediately preceding - operands,

3. Replace:the three symbdls used by the result of the operation

. *-1
,

(a new operand), .
.P

4.. Return to Step 1 until na operators remain.

We see this list of rules put in 'flow chart form in Figure 8-19.

Scan from left' to

right to find the
first operator

S.

'operator., present

yes.

no

on
the operator act

on ;the two immediately

.preceding operands

Replace the 'three 'symbols

used by the result of the
operation (a new operand)

..*

Figure..8-19. General rule for interpretation of

posfix form

1,

I,

s Our job is thus!reduod-to transforming the flow chart Of: F. gure 8719

into an algorithm sufficiently detailed that it can be writte in flow chart

lariglaage. (From there to a programmiilg language would be on y a small step.)

First we.intro4ice an expanded precedence scale or tz.le that covers all
.

thellisolators%that.can appear.in anassignmept'statemect (Figure

Co,nsulting this table properly assists us in eliminati parentheses.

to be explaided
4

later

Inereasi
order

precede

FigUve 8-20. Pre

ecedence "value"

1 .)

0

dance table

393

40

8-5

In general, this table can be interpreted as meaning that operations hexing a

higlir precedence value should be performed before those having S. lOwerpreCe-
-

dence value. But we know that it is not as easy as that. In the past we have

thought of parentheses as intervening to limit the length of the string1614er

which the simple Precedence rule can be applied. The,secret to overcoming this

barrier is to think of the right parenthesis as an operator, one which has a

preCedence value that is lower than that, of any arpthmetic operator. We keep
1 \

in,mind that whenever a pairof parentheses enclose a single,identifier, like

"(A)", such redundant parentheses will somehow be recognized and removed.

Now consider. neighboring pairs or operator's as, for example, in the

expression

(A t 2 +. B t 2) q

The neighboring pairs of operators are [1,+], (t,)] and (),t]., The

1

left parenthesis is not considered an operator, so it is, of course, not iep-

resented in any dperator pair. -Notice, that,for the first and third pair, the

left operayrhas a higher precedence than the right operator. 'These left °
.

.

operators are the ones we would naturally do first.. Do we have la clue to a
. .

, rulefor'ordering operations?

0
Consider a second example: '''

A

-i- , ..,

A x (B + C) .
:.

.

i i
: V

Now the neighborin? pairs of operators are (X,#] 'and (+,)]. The lef
,0

operator of each pair has a higher precedence than the right operator ut we

know thlt we should do the addition first. What tells us that the multiplies-.
/

-

tion is not to be done first? Note that a left parenthesis occurs between the

multiplication and the addition. The effect of a left parenthesis between a
.

-.------
, .

pair of operators should be to eliminate tleat pair of operators as a choice.

. We will now state a tentative rthle and see 11447 it works*by trying it out

on. (A t 2+ B t O't 2.

Teritative rule

make a listof-1M

by a left parenthesis.
4,0

2.. Choose the first (leftmost) pair of operators for which the left

operator has a higher precedence than the right operator.

3. Seleerthe left operator of the chosen pair for execution.

394

4

8-5

4. Replace the Ytriple" consisting of the-chosen operator and its left
A

and'eight operands by a special "place holdert'.
I

5 .- Take the triple removed in step,4 and rearrange it into. postfix form.

6: Generate the postfix striagby appending the postfix form produced

instep 5 to whatever string has already been generated.

-7. Repeat steps 2 through 6 until no more operator pairs remain.

c
Applidation of the tentative- rule to (A

22
B
2
)

2

is.di.splayed; step-by-
.

lov!step,. in"Figure 8-21. In the first line, it-happens that the first pair of

operators is selected so that we are concerned with the first exponentiation.

The triple for this operator.is A t 2 which is now replaced 'Or the place-
holder, a, as shown in time 2, Column 1. The postfix &form ip A21. . This
is 'added to the generated'string which was initially empty.

A
. -The second line of Figure 8 -21 proceeds: in a very similar way. Here thb

second pair of operators fi selected._ Thle third line goes in much the same,

way (the first' pair of operators-being_s!lected)- u4010. we attempt to appei'd

the postfix form, af3+ , to the generatO strip . Then we should ask ourselves-

if a placehoider can appear in the.generated string (the output of the pro-,

'cedure) .

.

is a symbol standing for A t 2, as p is a symbol standing Or
'B t 2. Representatives of elich of these (iluaa114....f.orat+-eready appear in
the postfix string. 'So, what would mean to append af3-4: ?. (Probably, jus
teL "ri." needs to be added.) a

Indeed, what, in gene al, should we append to a generated string when one
of the operands. or bot is an intermediate result? Some examples will be.
helpful here.

, Consider the ression of Exercise 8-5, Set A, (b),
2 -

{ ... N4
A X B + C

/il,.
,

We know the mullipliciltion should take place 'first and the intermediate result,
.. . ..A x B, is called s.a. The originAl string than hppnm. a -t- C and tilkischr

--e,

eratedstring is ABX. Next, ,shouid perfor4,the addttion, but c 'already
)

represents the generated str g. Consequently, the generated string becomes .-

ABXC+.' The,generalizatiod is given.in Line 1.-Of Figure 8-22. %

-er

-P

0

8

4 .

Expression Set of adjacent pairs of operators Triple
Substitution

-
fix. Pbst

Form GenTiantiebdisycisytfeimxptsy)ring

A21 - .
. .

, "

,
e

.
. ,

.
.A2 t

.- .

el

Bet:Aft 7+
(is this

a (3 ., ` .

-
?

(A 12 + B12) 12

.

.

.

'

.

%

(t ,+], L+01, [t,)1, DO)

.

a for
,

-

(3 for

I for

.
'

?

A t2 .

1

v

B t2

a +13 ,

'

.
- j ..

-,
\` A2 t..

.

B2 t

_

,?

,
f

.

((x + Bt2 i 2

(a +0) t2

.

(+AL c11));0,1]

-

(+,], OM

(r) I al .-

,
.

'

(),t3

, A `

s

Figure ,APplication of tentative rule to +

S

1-

it

LConsider the expression of Exercise 8 -; Set (a),''

A7 + B X C

' Aga in, the multiplication should take place first and the intermediate

B x C, is called a. The'originel.' string becomes A + a and the generated
/-string is BCX. Next, we should'perform,the addition) but a -already rep-

-

resents the generated string. Consequently, the generated string bectimes=,

A4C6+: That is, the "A" is appended on the' left end and the "+" on,the
a

'.right eRnd'ofthe current string. The generalization is given in Line 2 of

Figore8-22.

Consider the expression of EXekcise 8-5, Set Ai (h),

AtB+CxD.
Here the exponentiation should take place first and,the,intermediate resul.t1

AlB, is called, a. 'The, original string becomes a + C x D and the gener-,.

ate string is -tABt . °Next, w should do the multiplication, C X D,

the' intermediate result p. The original string is now a + p and the gen-,

erated string is ABt CDX . Next, we should perform the addition, but now both

operands areare represented in the generated string. EVidently the generated

string-should become. ast1_, Yeaimply,add;the_":FY in his case.,/The.'--
P

generalization is given in Line 3 of Figure 8-22.

Line no. Postfix-form New pogtfix string

1

2

3

an-

Xa+

015 +

Jstring)X+.-----.
"1,..

X(Eb4111)4.
%L.

(L1:2:L21)4. '
. -

Figure 8-22. Three ways to append to the,current string
when one (or both) members of the
a placeholder (X is any identifier that,
is not a placeholder.)

Amendment 1 to Tentative rule

If one or both of the Operands of a postfix form is e placeholdeiT

appeapl according to Figure 8-22.

8-5

Further problems appear in Line 4 of Figure 8-21 'since.there is just one
A

pair of operators and it does not satisfy.the criterion of the tentative rule

for selection. 'So, in Line 4, the tentative rule leaves us without instruc-

tions as to what to do next.'.

-
Earlier, we pointed out that if parentheses should enclose a single iden-

tifier, they should be erased. We shall add this rule about parentheses as

another amendment. k

Amendment 2 to Tentative rule

Whenever we diwover a matching pair of parentheses enclosing a single

identifier, the parentheses are to be removed.

Recall that the precedence table, Figure 8-20, contains two isolators

and ;)- which have not yet nen used. These are symbols associated with

the complete assignment statement rather than an expression. We also have the

' colon (0 isolator which can'appear if the statement is labeled. We now in-_

clude.all of these as "operators", forming a third amendment to the decompo-,

sition rule.
.

Amendment 3 to Tentative rule

To decompose an asslnment statement consider the se'of adjacent pairs

of all operators iiat d as "isolators" in Figure"8-20.

0

Now let us apply theamended rule to the statement:
st.

' -e4L (A t 2 + B t 2) t 2;

The step-by-step process is displayed in Figure 8-23.
-00' ,

This test of the thrice4amended rule is very successful. nevertheless,

there are several points to be made before a general rule for decomposition 1,

can be stated. Prime among These is the fact that our e le has not con-

21tned a situation in which tae precedence of a pair of op rators is equal.

Before going on-, you should experiment,with a statement, sLtch as

Z4-A+Bt 2 - 0; ak.
which should generate the postfix string

Cr

0 A

ZAB2t + C -

tio decide whether, in the tentative,rule, the phrase "has a high!i Precedence"

should be unchanged Orr should,be chal;ged to "has an equal or higher precedence".

,398

3,-t 8

Expression Set of adjacent pairs of operators
Triple

-Substitution
Postfix

Form
Generated Postfix S

ZA-(At 2 + Bt2)t2;

Z A - (a ;Est 2) t 2;

ZA-(a +P)t2
z< -(r) t2;

[i]pili±1, [+,t1, MO], 0,t1, Et,;i

+), (+pi], (t.)), [i,;]
f+,)] , [);tl,t[t,;]

parenthesis repoval step (Amendment 2)

t 2; [(4. 11:11

Z4-- 8.; Lid

a for A t

13 for t

I for a +p

A2t

B2t

a13+

A2-t B2 t

A2 t B2 t.+ I

'tor rt2

Z. Z 4-

A21B2t+ 2t

ZA2tB2t+ 2f

Figure 8-23. Application of amended tentative rule
0 2

to Z (A2 + B) ;

399.
2

4

4 4

8-5

Exercises 8-5 Set C

1. Apply the decomposition rule that you have decided on tip get the

postfix strings for -ten assignment statements that contain the expressions

in Exercise 8-5, Set A, (a) through (j).

2. Apply the decomposition rule that you have decided on, to

Z ((A x B + C)/C t 2 - (B - A))/(A t 2 + Bt 2) t2

Do you get the postfix 1.9= claimed, i.e:,

ZATI__>(_ 0 1- _PA- -A2 t B2, t + 2 t

Another point that should be resolved is when the operation of the rule

should terminate. The hopefully obvious answer in2-after the selected operator

is an assignment (0 or if a label is present, after the selected operator

A- AS (:).

We are now ready to state a decomposition rule in final form.,

Decomposition -Rule
.

1. Consider the set of neighboring pairs of operators (isolators)._ !"

listed in Figure '8-20 which are not-separated by a left Pareklesi.s'.

Select the first pait of operators_for which the left operator has

an equal or higher precedence than the right operator; we will be

concerned with the left operator of the selected pair.

Consider the triple consisting of the selected operator and its left

and right operadds. Replacg this triple with a placeholder.

3.. If neither operand of the,triple is itself a placeholder, generate

a new postfik string by. appending-the_postfix form to the old

postfix string. If either (or both) operand is a placeholder,
-

generate the new postfix string according to the rules of Figure 8-22

and make the placeholder(s) so freed Vailable for reuse.

4. Terminate operation of the rule whenever the selected operator has

been a colon (:) or,, in the absence of a colon, a left-directed

arrow
4

5 If the process has resulted in a variable isolated by parentheses,

remove them and return to step 1 to select the next operiator pair.
40*

400

8-6

8-4 k decomposition flow chart

' In this final sectickno./# show hoW the decomposition rule we just.developed

may be, implemented in flow chart -form using the string-Amanipulating,techniques

that were developed, in earlier.sections.: Incidentally, if you only skimmed':

Section 8-4 on your first reading:it might be a-gool idea to now study Some
'of the detailed flow charts of that,sectiod before proceeding further.

,

WA assume.a string S, of length n,. is stored in'computer memory ando

has been identified as an assignment statement. We further assume that all
blanks hare been removed, and that exterAal identifiers have been replaced

with internal,identifiers each of which is Short enough (say one word) so4hat
it can'be.obtain#d with a single access to memory.

Let q be'the following string containing the nine isolator characters,

(+ - x

Associated with this string we Will want a vector of precedence values, pv,
shown in Fignre -24. These are the "operators" and precedence values of
Figure 8-20 with an additional entry for the left parenthesis.

P pv
P

1
(-1

2
; 0

3 - : 1 -

. 4 <-- 2'

5)
r 3'

6 + 4

7 - 4

8 x 5

9 5

10 6

Figure 8-24. Association of precedence values4with elements
of

The placeholders a, f5, etc., are assumed to be available as a set of

distinctive syMbols
r
). For example, we'might have

(ar)..= (AA, AB, AC, ..., AZ, BA, BB, ZZ) .

tur,cbject is to generate a, string G, of length h, in postfix form.

8-6
ti

'
We now show the flow chart f decomposition broken up into four pants

or phases. The first three phaseb correspond respectively to the 'first

three steps of the decomposition rule. Phase 4 is a combination Of Steps

and 5 of the rule:

Phase 1

Examine the set of neighboring pairs of the operators (isolators) ,

listed in Figure 8-20 which are not separated 124:left parenthesis.

Select, the first pair of operators for which the left operator has

an equal or higher precedence than the right operator; we will be

concerned with the left operator of the selected pair.

A flow-chart for Phase 1 is shown in Figure 8-25. An initial value is

given to the placeholder index in Box 1. Box 2 is the linkage to which later

phases will return for a repetition of Phase a. Further initialization is

done in Box 3. Here prleft which'is the precedence value of the left

operatoriof the pair to be considered is set to zero. This value is deliber-

ately chosen because it is below the precedence value of any valid left

member of an operator pair. A pointer i, which will be used to scan S

can be set, to 2 initially since a statement cannot begin with an element

of, Q, which is what we scan S for in Box 4.

.--

Box 4 is an example of the reVersekbe of the chekbh procedure similar

to that in 'Figure 8-16. If the i
th

element of a- is in Q, p will point

at it in Q; ko4erwise p is zero. -The test of p is in Box 5. If si

is in Q, Box 6 assigns the precedence value associated with si to prright

which is then tested in Box 7 to see if it is negative (i.e., to see if si

is a left parentheks). If prright is non-negative, Box 8 compares the

precedence values of the two'neigbboring operators. If the precedtnoe value

war
of the left o ator is less than the precedence value of the right orator,

we,do not t to select the current pair of operators but record in j the

index of the right operator and assign prright to prleft in Box 9. We return .

through Box 11 to examine the next element bf S,

.4
..,..1'

If we. discover in Box3 'that si is a left parenthesis, prleft is set

to zero in Box 10 before returning through Box 11. This has the effect'ot

doomint to failure the next comparison of operators in Box 8.

If, in Box 5, we find that si is not in Q, we simply return through

Box 11 to examine the next.element,pf, S.

402

4

8-6.

The first time that we fnd a left operator with a preCedence greater
than or equal to the right operator, we branch from Box 8 to Phase 2 (Box 22)
with j pointing at the left operator of the selected pair.

,, .

.00

r F 1
h<-0

PHASE
1

PRLEFT t- 0

i 2

EXECUUE _

chekch(9,Q,l,si,p)

11

10

PRLEFT <--

PRRIGHT pvp

= string of "operators"

S = ource string

r index of the,next placeholder

p = pointer indicating ",operator"
in Q

pv = precedence values of "opera-
tors"

prright = precedence value of
right "operator" of
pair being examined

prleft = precedence value of
left "operator" of
pair being examined

i = pointer scanning

L- pointer indicating left

"Operator" in S and at the
end the pbsittlon of the
selected operator

h = length of generated string

PRRIGHT < 0

PRLEFT < PRRIGHT

i

PRLEFT PRRIGHT

.er

F

Figure 8-25. Selection of operator (Phase 1)

.

4
403

-40,)' a 4

'8-6

414

Phaie 2

COnsidr the triple consisting of the selected operator and its

left and right operands. .Replace this triple with a placeholder.

, A flow chart fOrPhase 2 is shown in Figure 8-26.. Box 13 assigns the

triple to, tl, t2, and t3:' Box 14 insets the placeholder into t
sj-1.

ot:, Boxes 1and 17 ',lei* up" Es by Moving all elements from ij+2 to two

places,tp.the left.. Box 18 adjusts the length of the source,string S efore

ygoing on to phase 3 (Box 19).
. .

O

i 4 j- n i 5 n-2

18

Al

S = source string

tl, t2, lir= selected triple

a
r

= placeholder

r = index of the next placeholder

n = length of string S

j = pointer indicating the
selected operator

i = loop vamVable

Figure 8-26. Selection and replacement of triple (Phase 2)

dy

8-6

Phase 3 .

If neither operand of the triple is itself a placeholder, generate

a new postfix string by appending the ppstfix forE to the old' postfiX\ .

string. If either (or both) ope4nd placehofder, geneiate,t1g.

new pos fix string according to the rules of Figure 8-22 and make
the aceholder(e) so freed available for reuse. '

A flow chart for Phase 3 is 'shown' in Fi ure 8 -27. 20 asks if the,
right operand is a pla-ceholder; ifnot, Box 2 asks if the let erand is
from this class. Just how such a test is carri d out depends on the choice,
of placeholder coding, If neither operand is a placeholder thevostfix form
of the triple is appended to the

/
generated string (Box 22). If the left

operand is a placeholder the right operand and the operator are appended to
the generated. string Pox 23) and a placeholder is made available r - 1). .

If the right operand id a placeholder, Box,24 asks whether the'left
4operand is one also. If it is, the operator alone is appended to the -

generated string and two placeholders are made available (Box 25): If the
).left operand is not a placeholder we have the case of last line 2 of .Figure,8-22.-

,0" This means we must now move every element of the generated string one positiop
to the right (Boxes 26 and 27) to make room at the left end so that the left 4

operand can be placed at its start (Box 28)4...BoX 29 appends the_operator and__ _

makes one placeholder available.

Phase 4 (Steps 4 and 5) h4.1.ppe 4.4

Terminate operation of the rule whenever the, selected operator has

been a colon (:), or in the absence of a colon, a left-directed

arrow (-). If the process hasresulted in a variable delimited by

parentheses, remove them and return to Phase 1 to select the next

operator pair.

A flow chart for Phase 4 is shown in Figure 8-28. Termination is-provided
AO Boxes 31 through 36 ("Stop" meaning, of course, proceed withsthe-next stage
of the total proces ing). Boxes 37 and 38 determine whether parentheses

surround a single el ent. If they do, Boxes 39, 10; and 41 take care of the....
deletion of parentheses. The length of'the sOurc.e string is decremented ty'
2 in Box 38.

i
;,

.

- In case the statement has a label, the semicolon wilt be.located at 82,

so we test for this case (Box 32) after the test in Box 31 turns out to be
true. If Box 32 turns oUt true, we are not quite ready to, stop.

405'4
0, .

ts

20 21.

(a)
T

2/4

(t1 'e a)
T

25

gh+1 t2

hse-h 1

r r - 2

V

tl e (a)
T

23

gh+1 t3

-na.

t2

h h + 2

r r 1

tl, t2, t3 selected triple

Car= set of placeholaers

= generated string j
h = length of'string G 'er

r = index' of next placehalder-
1

= loop variable

422
gh+1 tl

gh+2 t3

g
h+3

t2

h h + 3

26 28

1 +- h > ,
F

27

1+

g tl

29

gh+2.(--.t2

t 4

.

h

r

h +

r - 11
.

-
Figure 8-27. Sequence testing and concatenation (Phase, 3)

fir
Te.

et

)

ti

31

t2 =

'431
It

j

38

A

z

T

39

T

<- 6
J-1

4o

s2 = ":"

S = ant rco string

t2 = selected operator .
= pointer indicating old
position of the selected
operator in S

n length of

loop, variable

h = length of string

U = generated string

i4-k
i > 1 .

i 4- IN-1

34

g gi+1 A

. r

J-1
i 4- i+1.

41
F

i+

'42

n n -

l4

.

Figare'8128. Termination test atd parenthesis
elimination (Phase 4)

Ifistead, we move the generated string one notch to the right (Boxes 33 and 34);

place the label (located at intointo ".g1, put the ",: it- operator at the far

right end, and add '2 to the length of the generated string. The last three

assigtments are,lone in Box 35 before "STOP".
177-

f="

407

4 Q7
, 4 .

Epilogue

THE FUTURE FOR COKFUTERS

E-1

lir I
:i. ,

. " 4-Now that we have seen illOW problems are solved on computers, it is Ratural ,.
.

to ask just what problems are tieing solved? We hear so much today about the
.

.. 'way in.which computers:vill?revolutionize our society,'but hOw? For example,

are we doing anythint'oday (or will we tomorrow do something) that we couldn't.

t ,do at all without computers?

0

Z-1 Computer Applications T00145%

)

It is literally true that there tis hardly an area of,lhelan activity in

which computers'have tot been employed. Some a lice ons'are noe very sur-

prising, when one considers the efficiency of e computer in :tarrying out

repetitive operations very rapidly. Thus, we,find that a great 'many organ-

s_(induStrial, governmental, and educational), computers have been given
the job of keeping the . "company's books." Not only does the computer accept

and store vast amounts of information.about the organization, but it organizes

the inforMation so that people can Ask questions about it. The billing, pay-

roll, and inventory problems have usually been the first uses of the computer,

-but these;were Soon f011oWed by.the'geteri3ti6n ot management repOrts and

statistical analyses of the same information, so the-organization could at

last derive some benefit from ill that data.
t

'Besides the keeping of the bookst_the_computer has also contributed to

the "product" with which the, organization is involved. For a bank, this means

sorting and recording checks at very high speed. For an insurance company,

this means computing all of the digOnt.mathematical tables that appear in

insurance policies to enable one to cash in or borrow against policies at

every coneeivable-age. For newspapers, ,it means analyzing 'the text of an

article or an ad and applying the grammar or the /ahguag4lito determine when.

and how to hyphenate' words, and the production of a paper. tape to control mag-

azine changes and other details involved in running a typesetting machine.

For a hospital, it means continuous monitoring of epatient's heart rate,

breathing 'rate, e-td., to giVe immediate warning of possible trouble. Or` it

may mean analyzing the size, dhipe, and location of a cancerous tumor to det-

ermine the dope, and direction of several simultaneously applied radiation

devices, so the entire effect is felt.op,thetUhor and not on the good tissue

. 4
409

408

E-1

surrounding it. For a university, it

, laboratory so each Student learns new

etc., at his own:rate. Or a professor

might mean eon-ErOr-Of a language training
- 1

pideas, vocabulary, grammar, rownciation,
A / "
simulates the effect of a chemical reac-

tion before trying Another professor tests out a mathemati'5a1 conjecture

before trying to prove it. (Or maybe1he thinks of a new conjecture after
4

-watching what happens to his o one!)

pn a satellite launching, the complater is used to give"real-time".eva9-

ations of what has been happening to the launch vehicle, and it ma es predic-
. ,

tions as to what is about to happen. If corrections are needed, on a corn-
,. \. t

, .

puter is fast enough to determine_the kind, the,-amount, and the best time Pox.
, $.

s_

the correction. In a factory the cuter is often used to C-On-rol tart of a
.

manufacturing.process. Periodically, the comUter will test various gauges or
1 1

_thermometers, etc., and if corrections are needed, it can alert a human opera-

tor or initiate the change's directly.

410

4u9

1

/

E-2 Changes in Co uter Directions

E-2'.;

A computer i a very expensive piece of equtpM t, and smaller organiza-
, -

Sons haVe not t,eervable'to justify computers very easily: Several changes are

occurring, howgver, which will tend to make the computer much more accessible.

When the earlx machines were built, there were very few people who could com-

47.4i.catewith them. As the cost went up and more was expected from each tom,

puter, the lime/spent-N a person setting up the computer fOr,each specific

problem became prohibitive. It was necessary to eliminate-the human being

"fromithe loop."- Large programming systems were developed which could accept .

batches of input jobs (as many as several hundred at a time), and run one job
. after another without human intervention. In this way, much of the Overhead

was eliminated; and the cost of computation was greatly reduced. Unfortunatarly,

in the process the person with the problem could no longer communicate with the

computer as directlyAs he once/did. To be sure, elegant languages (such as

FORTRAN and ALGOL)were being devised t6 allow him to express the solution of

his problem morersily. But he ha lost the,ability to "converse", with the

mechanical servant Which was carrying out his solution

Airing thisthis tiMe, however, great strides were being made in computer
7'

technology. Faster and fastft components were developed, as well as miniatur-

ization techniques which reduced the distances over which signals had to travel.

Within a period of six or eight.years; an increase, in speed of 5000% ,was

achieved; and it finally became feasible to bring the man back into the

"conversation." The computer was now fast enough so that. many people could

carry on conversations'with it at °neg.-or apparently at once. The computer

runs so much faster than a human can type on a typewriter, for instance, that .

keystroked characters can be collected from each of 200 people, and the colm-

putecwould spend no more than .003 secoi;ds.doing it., Ways are being mound.
. -to program laiTe computers so that 200 people could all act as if they were

alone with the computer,' and a good deal of Unrelated work will goon in the

'idle times (A computer-used in this way is said to be "time=shared:") ich

ha_changes in the way a Computer can be used will surely le'ad to new solutions

to problems--both old problems already being solved with the help of the comb

puterl bLre'not'as well, and new problemeAt we couldn't hope to solve before.

411

4 1 0

,E73

one.porner a bit. But this changes the surfaces which meet at that corner.

"No matter, they should adjust! That's,fine, store it away so I can stctrt

landscaping the grounds. I'll call it back in a little while, and we'll

attach the Iandscape to

It doesn't sound as if he's using m eh mathematics, but he is. For one

thing, even though his hand isn't always accurate, he wants smooth curves. By

approximating ,his freely diawriCurve with d\Sequence of curves representing

well - behaved mathematical functions, the computer can build in a grel#deal of

smoothness without his being aware of°it. Once these functions are at band,

smooth surfaces can be interpolated between bounding curves. These surfaces

can even be forced to be tangent to other surfaces, or meet them in,other

aesthetically pleasing ways. The mathematics involved here is not terribly

complicated--analytical geometry and elementary calculus. Even the problem
,

of figuring out how to display a three-dimensional figure on a two-dimensional

display screen involves straightforward analytical geometry, as does the ro-

tation of,the figure.

o ..

.p

44.

4

4312

J.

40.

\

441

E-4

E-4 Preparing for the Future

With changes coming so fast in the computer field, how can anyone hope to

be prepared when heeaves school? Again the answer is tO.search for and

understand the basic principles and common ideas across the maTeTra.1 studied.

The most useful base for all of this has bean, and will continue to be,

mathematics; for in mathematics we find clarity of notation, an organization

of the material being studied, and the facility for approximating reality by

means of models--such as the functions which modeled the architect's curves.

Given the mathematicalileas and language, and a very obedienioservant., the

computer, we can expect to be able to ask new questions, and to find some very

interesting answers.

gib

ti

it

414-

4.1

A t.v
A..

APPENDIX A

SAMOS

Our Hypothett6a1 Computer

O

Let us describe a very simple computer called the SAMOS. As all digital

Computeis, SAMOS may be represented by the block diagram of Figure Al.

...1ARITHME TIC
UN/7"

//VPUr I

(Card =Lam.

4

STORRGE
UN/ T

(/0,,000 words)
OUTPUT

(rype writer)

CONTROL / T

4

.

Figure Al

oPERRrati
CONSOLE

We notice that SAMOS uses a card reader for input, a typewriter for out-

put, and a 10000 word storage unit 'for instructionsland data. SAMOS has an

arithmetic; unit where numbers can be added, subtracted, multipliea or divided

by each othwpd also a control unit which keeps all the other units synchro-

nized and erects the operation (4 the equipment. Although the control unit
. 4.10-

is one of the most important parts of SAMOS, the details of it operation are
not very import t to the programmer, and we will not discuss it in any detail.

However, we should keep in mind that when we use such phrases as "SAMOS reads'

a card" or "the machine stops", etc, it is the Control unit which effects such

actions.' Finally, Figure Al shows the operator's console which allows a hufian

operator to coifimnigate with SAMOS.
.

)l

415 414

The Storage Unit17---- .
.

.

The storage unit, or simply the "store",, in our digital computer is an

`electronic-'device*for storing data and procedures. It is di4ided into a
,..,

number of.intjavidual "cells" or "words" in which the information' may be kept /

. ,

As long as it is needed. The number of cells in storage depends on the type

and size of the computer. We will assume that our small computer has 10,000

storage cells.

0000

000 /
0002 9997

0003 9998

.9999

Figure A2. The Storage Unit

The storage unit is commonly called the "memory". This can be, very

misleading because the word "memory" is more appropriate for the higher level

storage unit of humans. The reader should keep _in mind thdrestricted meaning

of, the word when it is used for the storage unit of a computer.

As shown in Figure A2, in order to distinguish, between storage cells, all

computers have som5yotem of identifying the cells, the most common method

being to 'number them consecutively. Since our computer has 10,000 cells,

4
we need 10,000 consecutive numbers to identify them. One way of doing this

is to number them from 0000 to 9999.

Just as we identify houses in a street by a number called the "address",

4t has.been common to call the number which identifies a storage cell its

"storage address" or its "IOnlion". We may refer:to data-stored in cell

1500 by saying that "the data is stored in storage address 1500" or "the

. data is in location 1500".

Storage Cell Structure

TeN will assume that each cell is composed df eleven "Subcelli" as shown

in FigUreA3. T4e'left-most subcell is reserved for thd sign7(.+ or -). Each

of the other ten subcellemay contain a decimal digit ,(4,- 9):/.- an alphabetic

character ,(A - Z), or a special symbol..

Bxamplq of numeric data dre given in Figure.A3.
. .

(a) 1+101010;101010

(-b)

I 18 17 1 6

-1011 1213 (# 1 .5 o 0 010

Figure A3

'Address

0560

0501

Cell 0500 contains the number +1876. This number appears as an integer.

Leading zeroes.are'used in the unused subcells. Cell 0501 contains a

'negative number.

Examples of alphabetic data and'mIxtures of numeric and alphabetic data
41.1%_are given in Figure A4.

(d)

(e)

HI 0 o E

r I P.1 L le r 10 IF 1 I r.1,-/ I

j I)

8 0

Figure A4

Address

0800

0905

0906

0005

0015

At,
1

In addres8 0800 we have the name of.'dperson. In addresses 0905 and

0906 we have the first few words of the sentence 'We the people of the

United States In 0005 we have a mathematical equation and in 0015 ,we

have alphabetic, numeric and special characters such as the dollar sign, the

'decimal point; and the "blank" space.

4174 G

\
We have seen then,. that numeric and alphabetic data may be kept in the

storage unit of our small computer. Let s see how procedures are stored.-

The Storing ollProcedures Instructionnp

In a machine such aseSAMOS,'the instruc ions are represented by combi-

nations of letters and numbers which also fit` within a memory cell. For

example, the instruction below is composed of a sign (+), the letters A, D,

and D (ADD),, three zeroes and the numbers 1, 5, 3 and 8 (1538). is we

1+-1A ID10 101<?11 15 13161

shall see later, this instruction directs SAMOS to add the number stored in

address 1538 to the contents of the arithmetic unit

In summary, the store contains data (numeric, alph betic, or special

symbols) and instructions in coded form.

The Arithmetic Unit

The most importantA4mponent in the arithmetic-un 's the accumulator,

which is a storage device where arithmetic operations are performed. As

shown in Figure A5, the accumulator can hold ten digits plus a sign (+ or -).

ARITHMETIC UNIT

This unit per-
forms addition
subtractions; r.Th-r2 I 3 14 I S 1 6 171 8
multiplication "4
and division

ACCUMULATOR

t
data from data to

storage be stored

Figure A5

Data from the storage may be moved i Z-Vie,acc and} data in the

accumulator may be moved to storage. A ber La...the storage unit may be

added, subtracted from, multiplies r divided by the number in the accumu-

lator.

418 .

4

Instructions dn SAMOS

Every instruction in SAMOS has the following form:

2 13 4 41 6 7 18 9 Ii0
S

N

Operation
to be

Performed

0 & 0 Storage
Address r

The instruction iscomposed of ten characters plus sign. If these characters

are numbered from left to right, we have:

Characters .

Sign The sign has no meaning in the case of an
instruction. We will either use + or
leave it blank.

1,2,3 Characters,in these positions indicate the
operation to be performed:\ For example,
ADD for addition, DIV for-division, etc.

4,5,6 These positions are iled for indeXing as
explained later. Fg a while we will assume
that they are zero

7,8,9,10 These character form a'four digit number
from 0000 9999, and they represent
a memory aggress.

First let us see h to move data to and from the accumulator. In the
/

succeeding paragraphs the accumulator will be abbreviated 'ACC, and a a

represents a four digit memory address,. that any number 0000 t, 9999

Load The Accumulatol.

f

I I

L /3 o :o :o (aaaa)

The contents of the accumulator are replaced by the contents oX stopge,
address, aaaa. The contents of sass -remain undisturbed.

Store Th _Act.ilmutator

1415 019,0 ra la ,a

The contents 1 aaaa are replaced by

frr ACC remaintthe same.
00.0'

(aoaa.) .7-.0 9 cc)

r

T
< f:

1 .
the a db umulatot. The,

I

419

418

It ID Ni Joao la a a al

4.

Addition, Subtraction, Multiplication, and Division

Integer arithmetic is done with fOur instructions:

Add to the Accumulator

o o o la a a a

, -

The integer stored in location aaaa is added to the contents of the accumu-

(ACC) -t a ac78

lator and the result is left in the acc

Subtract from the Accumulator

1+Is u alo o ola a a a

I
ator.

The integer stored in location aaaa is s btracted from the accumulator.

The result is left in the accumulator.

Multiply

P Y10 0 o la a !.:3 a j R c)..,-(ACC) X (aaaa)

The integer stored inthe ACC is multiplied by the integer in location ,

aaaa. 'The product is developed in the accumulator. Since the nuMber'of,

digits that follow the first non-zero digit in the product may equalthe sum

of such "non-zere--dlgits-in --the accumulator and aaaa, the programmer must

be careful so that the number of `non-zero digits,in the sum will never exceed

10. For example, if the accumulator contains a five digit integer, the number

in aaaa must have a maximum of five digits so that the product will not

exceed the available ten digits in the accumulator. If SAMOS is instructed

to produce a sum of.more than ten digits, it will overflow and stop.

Divide

p=k0(Acc)/(8678#) *.

The integer in the accumuldtor is divided by the integer in aaaa. The

quotient is,developed in the accumulator. The remainder is lost.

420 .

SAMOS is. a Se uent al

As was expl 'ned

sequential machines.

= location 'L, it will

Machine

in Ohaptef'-'1, many modern digital computerl are
111k-'

If.SAOS is directed to execute the instruction in .f '

assume that the next instruction to be executed after

L is.tileinstruction in L + 1. If a program starts in 4; it continues

in L + 1,, L + 2 L + 3, etc., until an instruction is encountered which

either stops the machine, or causes a jump to a location which is not in

sequence. Instructions which cause these jumps will be treated in the next

few paragraphs. In the next paragraph, we will discups simple, three-step'

programs which instruct SAMOS to perform addition, subtraction, multiplication,

and division. The three steps may be placed in any three consecutive locations

svch as 9001, 0002, 0003, or 0100, 0101, 0102, etc. In general, we

may show the pro4ams in L, L + 1, L + 2, where L is any address from

0000 to 9997.

Performing Simple Arithmetic

Assume that we are given three integers which are stored in Ilptions

aaaa, bbbb, and cccc. Then we have the following three-step programs for

pefforming simple integer arithmetic.

IrAddition Subtraction

(cccc): (aaaa) + (bbbb), (cccc). (aaaa) = (bbbb)

L LDA 000 aaaa
L + 1 ADD '000 bbbb
L + 2 STO 000 cccc

Multiplication

(cccc) ..--(aaaa) x (bbbb)

' L LDA 000 aaaa
L + 1 SUB t00 bbbb
L 2 STO 000'4ccqg

Division

(cccb).--(aaaa) / (bbbb)

L
L+ 1
L + 2

LDA 000 aaaa
MPY 000 bbbb
STO 000 cccc

L
L + 1
-L 4) 2

LDA'000 aaaa
;' DIV 000 bbbb

STO 000 cccc

A Simple Problem

We can now use the six instructions which we have just learned to in-
.

struct SAMOS to perfore a simple computation. or example, suppose that

locations 1000, 1001, 1002, and 1003 contain four integers, the sum of

which we tint to compute and store in location 5000. Let us assume that the

instructions necessary to perforM this procedure will be stored starting in

1Pcation 0000 .

4

t

SAMOS Machine Unguage podirnikAtirm

4; *

LOCATION t
1

OPER.
2 .3 ii

/A/DE1(
REG:
S 6 7

:
/900RESS
.3 9 /0 II

=;:, i 4*-T -

, - 44tAW/912-kc
.4=CARD COL.

0 0 0 0
t i

L 0 11
i I

0-0 0/
i '1.

0 0 1
- i 1 1 ..a...4

1 ; o O1,1

,. ^(e9C-C)...-= :%00/)'''''. I 4

,,, P t.j
(/ 0

'..4:(1CC)-m-:- (A CC) *(4003),c,_
iliCC)11-1/00+)

0 0 0 /
,

A 1 0 1),, 0-0 0I,
00 02

, ,
A D b,, 0 0011 / 00311 ,

0.0 03,1 .0.,,9 . 0 . 0,I 0 0 0I, / 0 0 4-I., (RCC) -0
(5,0100)-0 (ACC)

.

....

0 0 .0 4 s r 0 o 0 o s,c, 0 0

.1 II' II III
I I. II II I I I

'II, I L I- t I III

'Figure
0-s

Figure A6 shows the program in detail. NOtice that the program is written'on

a coding form. The first four columns indicate the location of each instruc-

tion in storage. The next elevAp6columns contain the instruction. The

section labeled "REMAMS" explains each step in the procedure in symbolic

notation or in descriptive language.

The program of Figure A6 consists of five instructions. These instruc-

tions will be stored in locations 0000 to 0004, and will be executed by

SAMOS in the order in which they appear in storage, i.e., the instruction in

0000 first, then the` instruction in 0001, etc. When the procedure is

completed, SAMOS will try to execute the inetruction'in 0605, which'is the

next in sequence. 'If we wish to.stop 'the machine, we may place a

instruction in

Halt

Hilcr l000laaaal

The machine stops. If the START button in the operator's console is then_

-pressed, the machine, goes to aaaa for the next instruction.

422

441

,

1 r

Ha lo o o,faaaal

°

7111

The Problem of Overflow

Overflow occurs in SAMOS when an arithmetic operation results in a number

larger than ten digits. This may happen in connection with ApD, SUB, and

MPY. It will also happen weltry to divide by zero. All computers havea

provisions for, handling the, prbblem of. overflow. In SAMOS, an accumulator

overflow or a division by zero stops the machine and turns on an overflow'

light the,console.

N
Although overflow may be avoided by care hl planning andby testing,

spa4 will not permit us to treat this problem any further.

ModllyillE°the Sequence of Instructions

All the instructions which we have covered up to now, except HLT,

transfer control to the next instruction in storage. Now we will study a

set of instructions Which change the sequential nature of a program. These

instructions are called "branching" or "jumping" instructions.

A very important instruction is the one which alters the sequence of

instructions of a program. It is the "Branch Unconditionally" instruction.

Branch Unconditionally

la R u lo o 0 a a a
1

ThU,instruction directs SAMOS to ".pick up" the next' instruction from memory

location, amts. No testing of the accuttlator 'is required in this case.

Branch Conditionally

' Some of the most important branching instructions are those which break

he-sequential nature'of a program depending on the contents of the accumu-

lator. For example, the "Branch on Minus" instruction.

directs SAMOS to jump to location aaaa= for the next instruction if the sign

of the accumulator is minus, that is,. if the accumulator contains a negative

number. Tr the sign of the accumulator is- SAMOS will execute the next'

instruction in sequence.

423 42

For example,. suppose that wg.want to

implement the flow chart' of Figure A7,'

which chartes the sign of A if its

sign is posiitive. Assuming' that the

numerical value of A is stored in

'location 0500,' the fdllowing program

does the trick:

a

Figure A7.

.

LOCATION I
/

OPER.
2 3, 4

INDEX
AEG.

S 67
ADDRESS
8 5/011

'
2

RE/118RkS .

CARD COL.

0000
I I .

LpR0000sop
I I I I 1 1°1

(ACC) -._A

IF (Ace) <0 GO ro a o Os'
,

071/ERkeise GO TO 0002 AND

0,87-/N /9
STORE A hv OSOO

. .
.

,
o

aoo/
I I 1 sAi.ro1I

000
i
o

I

o
I

s
D002

,` t I

54/B0900S-00
1

I
1 ' ' '0003 .50,30000j-00, , r

0 0 0'4
I I I

sr000bosoo
I I I I i I I

00 OS
I I I

NEXTII STEPII ill
Notice that° A, which is- in 0500, is loaded into the accumulator. Then

we say "Branch to location 0005 if the accumulator is minus, otherwise go

to the next instruction in sequence (0002)": The instruc&ons in 0002,

0003, and 0004 then genelite -A by subtracting A from itself two times

and storing the result in 0500. Eventually the two branches merge in 0005,

since the instruction in ,0004 (STO) is a non - branching instruction which

sends SAMOS to 0005 as. the next sequential step.

Shifting Instructions 1.4.4"N.

Sometimes it is necessary to extract part of a <word or to combine several
,

items into a single word. This is done by instructions which shift" or slide

the contents of the accumulatorto the left or tcl the right.

.4424 .1
A),--)

t...)

"ke
*.

100.0 100 00 1

14-15,6,7,8,9 , 0, 0,0,0,01

ler

Shift Left

1+rsk cro-0 01000 p 1

This instruction shifts the contents of the accumulator n positions tb the

left, where n is less than

unchanged. The left-most

are filled with zeroes.

For example;

or equal to nine. The sign position remains

n digits are lost arid the right-most n digits

Suppose the accumulator contains the number +0123456789

Instruction

ACC Before Instruction

+10,1 .it

1:1- IS HL _10 0 0 100 OS 1

1-1-1SHL. 1.0 0 0100 0 91

, -

ACC After InstructiOn

1419:0 ,0,0,0,0,0p.i0,01

Similarly, suppose the accumulator contains the alphabetic

"JOE' SMITH"

tt

Instructions

ACC- Before Instruction

,E .5,M, T ,

1:4-1s A/12 lo 0o-10004 1

r4 1 SHL 10 0'010 0 0 71

characters

ACC.'After Instruction

1÷17-,H0,0,0,0,0,0;01

425

Nc,4 24

44

HRA41) 1000 LaacFai

I +(WwoI000Iaaaa]

Shift Right

1:1-[..sHRl000

4
This is similqr to. SUL, except ttj t the contents of tlib accumulator are

shifted n digits to.the right.

0

Examples:

ACC Before

/ INSTRUCTION

ACC After

rISH R 1000 1000 6

HO I/ I 2 I3 .6 17 1819

1,1.7
OE SMITH.

I --1 o soc). op ,2,31

Io o 0000.- 0

Input and Output Instructions

Inst ctio a data must be placed in storage before a progrilm,can'be

executed. is d e by the "Read a Word" instruction:

Read a Word

This Instruction causes SAMOS to take a caltinto the card readex and to

transfer the first eleven columns bf the card (ten digits plus sign) into

storage address aaaa. The rest of the card is disregarded,

Results are printed in the typewriter by the "Write a Word" instruction:

Write wIdord

,N.-.

is causes,S OS 'io return the typewr er carriageo Ovance.4tile next line,
...

d type the/infprmation stored in a9a in the first eleven columns. of the

ty4pewriter. /

W'S

A 426
,Vr

ft 7 _14-0

m.

For example, suppose that we want to type on the typewriter the

punched into the first eleven columns of a large number of cards.

usually referred to as "listing the cards". We may use the flow

program of Figure A8. °

rRERD 9 WORD

$

A-4i92;4
WORD..

0

information

This is

chart and

6 o 0 ,o1,1 + RfrvO0o00II
p 03III

,

0 0 0 / ÷ W W 0 0 0 0 0 0 3

0002 8Ru° 000
0003-1'0000000000

, 1 ,1 . . ,, III
C

Figure A8

t
The plt.gram occupies four words. Location 0003 is used as temporary

storage to hold momentarily the information read from the card. The "Branch

Unconditionally" instruction returns the machine to the beginning of the

program. The' machine will stop when it is unable to complete the execution

of the RWD instruction, that is, when there are no more cards in the card

reader.

xx,

Steps Which Modify Other Steps,

Suppose that instead of finding the, sum of four numbers as we did in

the program of Figure A6 we were -asked to find the sum of fifty (50) numbers
4

stored in storage addresses 1001 to 1050. The program would be very

similar to the one shown in Figure A6, except that we would have additional.
er

ADD instructions between the LDA and the STO instructions. The pattern

of the program would be:

427

44 V)

LOCATION L.

/
OPER
2 3 4

INDEX
REC.
4" 67

.

ADDRESS
8 9 /0 11

REMARA-S-
CARD COL.'

0 0 00...i L. ',0 Ait 0 0 0ti / .0 0 /iti (aCC)-4,---(/00/)

(RcC)... (RCc) *(1002)
(9Cc),...- (ACC) :A (/ 0.0.3)

(94'...(Ace) 7' (/04.5"0)
(5-00,0)-.- (Ace)

,

000/ R.D0000/ 00 2
0002 19 0 D 0 0 0 / v0/0 3

,... ., ,, , ; ,

D o 4 9
I t i

A.D p
I t

o 0 0
t

1 0 5 0
I 1 I0 010 srpoOos000

Figure A8

It is seen that the programmer would have to write 51 instructions
(0000 - 0050), which would require 51 lines in the coding form. On the
other hand, if the problem is to add 3,000 numbers, the programmer would
have to write 3001 instructions!

If we observe the program of Figure A8, however, we notice that each
ADD instruction differs from the following ADD instruction only in the
storage address. In fact, storage ddresses of consecutive ADD instructions
differ by 1, so that IS we cons ruct a basic ADD instruction, which we
may call the "base" instruction:

ADD 000 1000,

then we may produce all the needed ADD instructions by adding the numbers
1, 2, 3, 4, ..., 50 to the base instruction. For example, to produce the

first instruction, we have

"base"

first'inst.

ADD 000 1000
+ 1

ADD 000 1001

In fact, we may genetalize this pro ess by saying that the i
th

ADD
instruction is obtained by adding i to e base instruction. Then, if i

is called the "index", the 50 instructio s may be generated by repeating
the process -with the index taking the values i = 1, 2, 50. This

process is shown in.fiow chart form in 'Figure A9.

428

5774Rr.

t/

CIs)..00

IN
c) (.ccc) i (boo ti)

Figure A9
0

Another way to obtain the same results is shown in Figure A10, where the

index is started at 51 and decreased by 1 until its value goes down to 0.

(19 t = 0
N

(6. cc (9cc)* (woo ,..)

Figure A10

429

(5-000)...--(RCC)

C The process of generating instructions by the modifiqation of other

instructions is done in SAMOS by means of indexing registers. These registers

. are used to store the index in repetitive programs of the type shown in

Figures A9 and A10.

An "indexing register" or "index register" is a special storage cell

similar to the accumulator, but which is only used to modify the address part

of an instruction. Since addresses have a maximum of fourletigits, index
1

registers need be only four digits long. Figure AlOb shows all the special-

registers. Notice that these registers have no place for a sign and hence

cannot represent negative numbers explicitly.

ACCUMULATOR

-.2=1111111'111]

IlIndex Register 1 IlL
Index Register 2 I

cl I 1 I

Index Register 3

Figure AlOb

As seen in Figure AlOb SAMOS has three index registers called 1, 2,

and 3 respectively. Instructions are available to place an index in tlie

register as well as to augment, decrease, and test, its value. Here we will
4 '

show only two of the most important instructions and then show how the flow

chart of Figure A10 may be implemented with them.

Indexing Instructions

The first indexing instruction allows us to place a four digit number

into one of the index registers:

Load Index N
:

+11-m b000laaaa

Load Index Register n (n = 1, 2, or 3) with the address part (positions

7, 8, 9, 10) of the contents of location aaaa.
fi

.430,

The index register may be decremented and tested by the T In

Test Index N

.-Jr l !Ito ola a a a

instruction:

Subtract 1 from Index Register n (In)'. Then, if (In) is equal to zero,

branch to _sass for the next instruction,, otherwise, continue in sequence.

Another way to say this,,assuming that the "Test index" instruction is .

in storage address L, is:

(In) 4 (In),L 1
if (In) > 0, go to
if (In) = 0; go to

Now we can show the program for Figure A10.

L 1

aaaa =

gliese parentheses are
'really not part of the
instruction. They are
placed here to make it
easier for you to follow
our discussion.

LOCRT /ON I OPER
2 3 4,

/NDEX
REQ.
O 6 r

ADDRESS
8 9 /0 1/

O 000
O 0 0 /

I I I

I. .0 Al
I I

000
I

O 005
I

L. I /
O o 0 2

I I
/.

,

'0 00
I

O o 0 6
o

I I

O 0 0 3
I I I_

A'D D.
I

/ 0 0
0 00 t R O 0 0
O 0 0 S O 0 0 00

1

.0 0 7

o q, o)dr- (9cc).,_-'eAco4A(1900 #11)

RE/1:1RRKS
...-,C*)Ro COL.

RODRESS P4Rr ok-0 oo,5)

3k-c.RE-MENT 141047i1Sr Il *,

O 00 6
- 1 1 ,

O 0 o O 00
,

o o .5'11
.,-

O ,0 0 7
I I I

7. 0
I I

O 0 0
I I

5000
1 4

90o,d.1 I.
H L "7'

,
'0.0 0

I I
0, 0 0 0,

40 7-0 0002
fl/ .e cb.v.s.r/fw'r d

r.'f.E CONSTIM/' sr/41

(..9000)* (ACS) ,

STOP. If sreRr 2fuTrom ;is
PRESSED; 90 ro

Figure All

At

S

ti

.4

o

4

Notice that in the coding form of Figure All we have labeled card tolumns

5, 6, and 7 with the number of an appropriate index register. If the column

corresponding to an index register has a 1 in it, SAMOS will adds the contents

of the index gister to the address part of,Ithe instruction before executing

the instruction. If the column corresponding to,th index registeris zero,

the index register will be disregarded. For example, if 12 (index register

2) has the number 0030 stored in it, the instruction

INDEX
REG.

NIwill add to the accumulator the co tents of,lbcation 0530 (,0500 + 0030)

123

ADD 010 0500

rath r than the contents of locati n 0500. Similarly, if index register 3

contains the number '0400, the instruction MEY .001 0155, will multiply the

accumulator by the number stored n 0555 (not by the number 555, but by

the contents of memory address, 55):

Going back to Figure All, otice that the program starts in location

0000.,. With locations 0005 A d 0006 being used tp store the constants 0

and 51 respectively. In lo ation 0000 we-load the accumulator with a

zero by means of the LDA instruction. In 0001 we "load index 1," with

the storage address portion of the contents of 0006, as shown below

location contents

0006 + 000 000

II
0

The instruction in 00021 does two things; firsts it decreases Ii by 1

(and makes it, equal to 50 the first. time around) then At performs a test

on the value of Il. If the contents of Il are zero, that is, if we have

finished adding all the fifty numbers, SAMOS branches to C11,)01'tO store the

sum in 5000. Otherwipp, SAMOS continues in sequence to 0003 where the

base instruction is located. This instruction is executed as shown in the

chart below:

432 1

, 43

Time the instruc-
tion is executed

Base Instruction :, ADD 100 1000

Contents Instruction executed
of Il by ,SAMOS

(.

Address of
number added
to-the ACC

first 0050 ADD 000 1050
second 0049 ADD 000 1049
third 0048 ADD 000 1048

.

50th 0001 ADD 000 1001

)

1050
,1049
1048

1001

After each ADD instruction, it is necessary to return to location 0002

by means of the "branch unconditionally" instruction. The TI1 instruction

in 0002 again decreases the value of Il by 1, tests wlfether or not Il

is,zero, and chooses between the ADD and the STO instructions. Eventually,

after "going through the loop" fifty times' Il will be zero, the loop will be

terminated, and the results will be stored in 5000.

How to Start SAMOS - The Operator's Console

In all of our discussions concerning'the execution of programs we hgre

neglected to Answer two questions: How does the program get'cnto the storage

unit in the first place, and how ddes SAMOS know where to get started?

We will try to answer these questions now.

First, we shall assume that SAMOS has an operator's console whih looks

somewhat as shown in Figure Al2. 470

aF

ON

0 0

OFF

0 0 0 6
DISPLAY UNIT

LOAD'

111 8

STfIRT1 STOP

Figure Al2

On the left side of the console we have the° ON and OFF switches to

turn the machine on and off. In the middle of the conso e we have eleven

display units, which show the contents of the accumulat At all times,

Under the display units 'SAMOS' hSs push»buttons market LOAD, START,

and STOP., When LOAD is pushed, the machine reads ProgramInstrwtions,

.00
433

4 8 2

one per.card,'and stores them into consecutive locations starting at 0000,

until a blank card is encountered. The blank card is interpreted by SAMOS

as an unconditional branch to 0000. Therefore, if the first instruction of

the program so loaded is in location 0000, the blank card automatically

starts the execution of the program. For example, in order to execute the

programs of Figures A6 or All, we need only punch each instruction in the

-first eleven columns of a card, being sure that the cards are in the proper

order. Then these cards folloyed by a blank card are placed ip the card

reader and the LOAD button is pressed. SAMOS will read the first card and

and place the first instruction in location 0000, then SAMOS will read

the second card and place the lsecond instruction in 0001, etc., until the

blank card ls read. When the blank card is sensed, the machine will automat-

ically begin executing instructions starting at, 0000, which happens to be

the first instruction in both programs. If a program starts in a location

Luff, other than 0000, we may place the instruction "BRU 000 Trrr in 0000

to cause a branch to the starting location after the blank card is reached.

SAMOS may be stopped at any time, by pressing the STOP button and may be

re-started by pressing'the START button.

The operator's console, then, allows the operator to turn the machine on

or off, to loadsa program into storage, and to stop and re-start the machine
,-..,

at any time. '-',
'

. .

a

Examples of, Programs

2
EXAMPLE 1

leding Values'in a Table .

Suitbse we are given a table of-integers between 0 and 1000' and their',

cube roots as shown in Figure A13.

p.

n

0

1
2

3
4

999
-TO do

0.000 000
1.000 000
1.259 921
'1.442 250

1.587 401'

9.996 666
10.000 ow

Figure A13

Jti

434 :

433

a

p / '
.

We want to write a Program which will "look-up" values of the cube root

in this table for any given inte er between 1 and 1000 and will print

this value on the typewriter. We will assume that the table of Figure A13 has

been punched in 1001 cards, each card containing the value of a cube root.

The program should read the table into storage and then input from the card

reader a value of N. SAMOS should then print the value of n and its cube
. .

root, then SAMOS should read another value of n, and so on, until it runs

out of data. Data sets should be separated with a blank line in the output.

'I

A possible way to write the program is shown in Figure The program,

was written starting in location 0000 and ending in location 0005. Notice

that we have enclosed the variable address of the instruction in 0003 in

parentheses to remind us that the address is.modified by the contents of an

index register. Location 0006 was used to store the value of n temporarily
and location 0007 was filled with blanks. This was used for separating data'

sets in the output. The table was placed in locations e008 to 1008. When

instructions and data are read in from cards for storing,in,locations 0000

through 1008, a final blank card will cause a transfer of control to location
...

0000.

The program works as'follows:, The instructions in 0000 and 0001 read

the value of n into location 0006 and also print this value on the type-

writer. The instruction in 0002 loads the value of n (which appears in,

the storage address part of 00o6) into index register 1. The next instruc-

tion writes on the typewriter the contents of location '(0008 + n) 'which

contains the Cube root of n because of the way the tablewas,stored. Notice,

for example that when n iS 1, the'cube root'is found in location' 9, when
n 'is 1000, its cube root-is'found in 1008, and-so on.

5

4

1 1 c

-r

ff,

LOCATION .1..

I
OPER
2 3 it

INDEX
REQ.

47, 6 7
ADORES $
e 9-/0 4,

REMARKS
CARD .COL . .

_0 0 0 0t t 1

2 / W 0
I I

0 0 0I, 0 0 0 6111 (000
WRITE

.1019o_

WRITE

WRITE

BRANCA/

/7'
81../iNK
.....5
VO.
3v7 .'

.._
V2

V3.

v it i

; ,,:

6)- n. .

THE VALUE OF n Ow TYPEVR/TER

I i twrii vigaiE or /1
(0002 v. Li) 77/ g fr.;
A ITGRAlk 1./N.0 FOR SPACING-

TO 0000 FOR ANOTHER ,M9Ll/E

. . for n
1

LINE FOR TYPEWRITER SPAc./Ns

.

.
. .

4. ? .
, .

rR8LE
----- ' `c, ---4

..1) 4'

'

Fi ft p TO TRANSFER'
. ..

0 0'0 I
, I ,

W W 0it 0 0' 0I, 0 0 0 6
1 .1

0 0 0 2
. . ,

L I 1.. 0 0 0I. 0 0 0 6..1
0 0, 0 3 WW

t
D / t0 ,

0 (0
, 0 1.0

1
8)

0 0 0 it
. . ,

W W 0it 0 0 0II 0 0 0 7III
0 0 0 00 0 0 S 8 / 2 LI 0 0 a

0006
, . ,

+ 0 0 000'0
, , ,

0000
, I I

0 0 o 7
. . .

+
, I , . 1

00081. ,
t 00000000-00

i 1 t t I

0009 +.0/004,00 00,0
,. ,

0 0 1 0
I .

0 1 2
1 1

..5- 9 ,9
i

2 /OS
t, I t

0 0 i / + 0/ 5'
,

1,1. 2 2
I .

4- 9 S 7
i , i

0 0 1 2
1 .

4- o i _s
I

3 7 it
I I

a / 0 S,,.1 i

1

1 i
i

.t .1'1-
_....

; _.-
. ,,,

1 10 0 7 # C3 9 19 9)6-:6" A6 44
. ,----4

t:;52.79 kir-lc
TO' .0000
)

.

'''..

I . .

,
. 1 1 1 1.'

.4

t

FiguPe A14 p

+0000000008
+0200000000

+00000000234
+060162201

Figure A].5

r0

,oTypewriter paper ,

Notice also that the decimal point which appears in the table of Figure

we have done is to

.an integer) anti

between theesecond

A13 has been eliminated in the table stored in SAMOS. What

storeeach cube root as an integer (actually x 10
8

as
.

we have kept in our mind the fact that the decimal point is

and third digit from the left of the number. When the cube roots are printed

as shown in Figure Al5 the prOgrammer must recall the location of the decimal

point and possibly mark it with pencil or pen on the output (such as

02A00000000).

` After printing the cube root of the number, the instruction in 0004

causes a blank line to betprinted. Then a branch is taken to go'back for

another value of n by the instruction in 0005. Notice that the blank line

has been supplied by location 0007, and that a t+ sign was attached to it.

This sign is necessary because a completely blank card in the input deck would

transfer SAMOS to ,0000 before the table was read into storage. This

transfer is accomplished by the blank card f llowing the cube root table.

Figure Al for the values ofThe output of this program is shown

n = 8 and n = 234 respectively.

The program of Figure A14 may be easily modified so that the output

shown in Figure A15 will have the decimal points of n and 11 aligned: Th4
output would then be

+0008000000
+0002000000

+0234000000
+0006016e24

EXAMPLE 2

TheUse of SubprograMEst

.3*

As explained in the body df this text, a subprogram (or "subroutine" sas

we shall henceforth call it in this appendix) is a general purpose pl'ogram

which may be used by other,programs. We will show how the cube root program

of Example I may be modifiedfOr use as a subroutine.

In this example we wish to compute

tYou s ould read,th

.X = 2 + 3a
1/3

+ b1/3

rtion only after you have read Chapter 5.

1137

,' 4 JU

ti

Vb

where a and b are positive integers not greater than 1 We wt/1

assume that pairs of a and b have been punched into conse ive cards,

and that we Wish to compute X for m such pairs. The input deck is as

shown lin Figure A16.,

) Mth set

seGend set

first set

Figure Alb

We may,tessume that output to be as shown in Figure A17.

Figure A17

A Cube-Root Subrottine

450.1.17.}.0411.7.10.11rve

We will first design a subroutine with the following specifications:

The subroutine will assume that the argument, an integer (

between 0 and loop inclusive, has been placed in the

accumulator prior to entering the subrouting.

2. The "return address" is the address of the next instruction to

be executed in the main program following the completion of the

subroutinels task. This return address should be stored in

index register-2 before entering the subroutine.

438

3 . The'subrout'ine should place the cube root in the accumulator

before branchg bac to the main program.

From these specifications, the program of Figure A18 follows. This is

a slight modification of the program in Figure A14. The table is stored in

locations oo06 to 1006. Location 0000 is reserved for branching to the

main program. Whenever we wish to use this subroutine, the following steps

should be taken.

1) Place argument in the accumulator

2) Load the address of the next instruction after the subroutine

into, 12

3) Branch to 0001

The cube root will be available in the/pccumulator upon exit from the

subroutine.\ Since Il and 12 are used by the subroutine, only 13 is.

'available for the main program.

LocAriON #
1

OPER
2 3 4

/NOEy/
REG.
S'6 7

AooREss
8 3 10 1/

REA4/912KS
C9R0 COL

0-000
I I j I r I I /

RESERVED
I

(000s).(9cc)
,,,

(.I.. SI --.--

(fic0.-(00061
8,eAvicH

ARGUMENT

FOR a li, / 4/v CM/1/6

ADDRESS PRAT or (oar)
14)

To ADORE.s,S

.

.

7-118Z.E

.

0 Do/ STO0o0000S
0 00'2.1 .rI. Jo o 0000s.

, I i0003 L On / 0010006)
0 1 0 (00 a 0).0 004 4? li* u

0 0 O'S
I I I k I

ti
I I I I

0 0 0. 6 t 0 0 0 0 0 0 0 0 0 ,0 . ,
V 0

.1.727

1

,-3
v991

0 0
.
0

,
7

.
y-0.
#

/00.000,
6 / 2

.
S 9. 9

1 1

01 0. 0177
2 / 0 S

, I I

0 010 2
. I ,

. .-I I' I
' 1

I
I. '.1 IA

/ 005+-099. .
9 6,

i6 6
t
-1'4-'6

I 006# i 000000,000
I I , , ,

N34000 ;

. , , , I I ,

f,

2:

Figure A18

,439

438

The Main Program

The main program is.shown in Figure A19, and it occupies locations

1042. Ageneral block diagram is shown in Figure A18.

RERD
a

EXECUTE
A 003 va

REPO EXECUTE -WsrX vb
.311-1

X -t

I

PR/NT
al, b,
RND a
431/Mt L/A4F

Figure. A18

This diagram does not show all the steps required to enter the subrobtine

or other machine langiage details which are important when the_actual coding

is done. These,detailsare explained in the remark section of the coding

form of Figure A19.

The program make use of.index regitter 3 to count the number of sets of

data. Index registers 1 alid 2 are reserved for the subroutine. The reader

should follow the program, step by step, paying special attention to the.

contents og,the accumulator and, the index registers.

440

4 9

a

'7- Notice that °the constants in 1033' and 1034 are Used to load 12 with

the addresses to Which the subroutines should return, Other Constants such

as 1, 2,, and 3 are available at locations 103.5 7-'1037. Locations 1038 -

1042. areused to store the variables m +'1, m, a, b,. and x.

As before, the irograrh will be executed by SAMOS if we' place all the

program Bards in the card reader in ascending order of location, followed by

a bid& Card, and by the dates and press the START button. The instruction

in 0000 branches tosthestart of the main program (1007) as soon as the

blan1 card has been sensed.

J

4

yj

441

4

r

LOCATION
/

OPER,
2.3 4

iNDE.r
Rio".
S6 7

.9 ooRes.5
8 9 10 ll

. 'REMARKS
CARD Col. . .

0 0 .0 0
I I t

, 8 R 0
, I

0 0 0 / 0 0 7
' ' I

.,[Sc/IIROt/r/Nf
41'

,

-,BRANcl/

GOES` /N PLACE Or
HEAVY LINE . ;REND A WORD INTO /77

41411 tn._ al,. I

(13)-- m i- /

DECREMENT AND TEST 73 *.

RE/9D a /NTO /04-0
Met).- a
*3 ' . .

(I2) -RE ADDRESS f /o/7,7

BRANcH TO ullsfriOC/r/NE . ,

(19CC)-.- _Tx (RccP
3,-- .1/01/2).-- j v a

REX b /NTO /04;
(ii,e0-00 .

(12)-0 RETURN ADDRESS f/e43)
.

8/2/1A/th, ro sueRour/A/0
3. ,__ .3,--

(Re(d-- V b 7' ..5 Va
5

1,_ .s_____..-

x-0-- 2 /- V 6 4 31a
.

PR-/Nr ,:v
,...,..PR/Nr 6

. ,

ilti/Nr x r
L -

PRbyr A BL/94//c L./NE

8/kie Poi? Am/OTHER"- -SET
'N.

/ 0 0 7 , 4 1 4 / D 1 0 3 9
/ 0 0 8

1 1.1
L o A

i
/ 0 3 9

I I

/ 0 0 9
1 I I

A D 0 / 0 .3 S
. I/0/0

1 i

STS /038
t I/0-//

t , 1

L. I3 / 03 8
/ 0 / 2

I I 1
1 13

,
/ 9 3 /

, . I

/ 0 / 3 / t W D I. 0 4' o

/ 0/ It
, 1 1

L. 0 8 / 0 I., 0Ill// S101
.

L, 1 2 !. I 0 3 3
i . .

/ 0 / 6
t 1 I

1?' R uI. 0 0 0 /it/0/ 7
I_ I 1

ni P,y
I t

/ 0 3 7
I I

1 0 / ,8
, . ,

S T 0
1 , 1

-
1

/ 0 4 2
1 , 1

/ o 1 9
, 1 J_I R ki / 0

i /
/ 0 it /II

1 ,0,2 ,0 LID IA / 0 ,z/il
1 0 2 /

1 t 1

L 12
, ,

/ 0 .3 44
1 t

4 0 2 2,. 1. I
4 /2 U 0 0 0/

I 1 1,

1 0 2 3
I I'I R D D

I i I I
/ 0 4/ 2

1 I I

/0,24
I . I

ADD-
I I F /.03 6

t 1

IO2S
. I . . 3,TO

. .1 1 1

/ 0 4s: 2
I I

026/026
, 1

if./ W 0If if / 0 y 0li
i 0 2 .7f 1

il/ w o
1 1 I t

/0 44/
, ,

/ 0 2 et
, . I

w w 0
I , e .

/ 0 It ,2
1 ,

1 0 2,9 Willy / 0 .3 ,2

1 0
I

310 0 4
I
.l?

I
I) 11 1

/ 0
1

/ 1'2
/t0131 /

N
/1 Z. r 1 V.1. II / 0 o 7II .5:1-O F3.

z Figure A],9

442

441

CONSTANTS

tOCAT ION S
/

OPER
2 3 4

/NOEX
4EQ.
S"' 6 7

ADDRESS
1 9 /0 //

Mr
REM/90°S

ci/RD col..
/ 03 2

I I
1-

, 1 1 I I I I I
61./9NitS FOR TYPEWRITER Site/PP/NO

'.
fiRsr sue/war/NE RETURN AlovitEss

se-coNo _,,-
7g" /

7 2A 00000000 -

t3
m74 i . '

t.

/r) 1-
!i

4 ':a .
s

.../ .. ,6 .
/

...x . ,.?
. . .

BLANK 7/21?N.TP.ER CARD-._, . rt .
:

.%

--..-- ___

/ 0 3 3
I 1 I

t 000000
1 1 I I

/ 0 / 7
I I s -

/ 0.344*
I . I

000
I I

000
I I

/ 0 2 3
I I I

/ 10
I
3

1

S l' 0
I

0
I

0 0
I
0

t
0 0

I
0

I
0

I
/

/ 0 3 6+
I i 1 020

"1 I
000

I I
0,02,00

I -I- I/ 0374000000
I I I . I I I

0002
I 'I I1 038

I I 1

*'000
I I

0 00
. I I

0-0 00
, i

/ 0 i' 9'
. I 1

+ 000
I I

000
I I

0000
I I I

/ 0440
I 1

It 0 0
I 1

000
I I

0000
I' I I

/ 0 Y /
i I I

'4 000
I I

000
I I

0000
I I I

/ 042
. 0-, + O00 0

c
oo,0.0,600

, t ``i I
...

; I

#.
t I

4._

I I I -

...-""/
I I I !

v
I I I

ID

. .
.

4

I I I I I I I ' I I I

%

..

....." '
:

C

/

.
"' t

r
.), .

..

.

.
4

0

t

2 1 i I i i .. i I

I I 1 I I I I I 1 I P

I I .. I I I I

,
.,

1. 1, 1
,

" . i i 1 I

/
,

1 1 Ir Of

, I 1) I 1 I

1.
t 1 I

,

i" I I ' I I t: I I I I

I I
0

I I I I '. . I I

I I I

1

I I I I I I

ft ...

4

aa

a 1 I I I I I . I

Figuie A19 (continued) ,

1/4.

4

General Remark on Branching

Here we shall touch briefly on the relationship between a condition box

in a flow chart and its equivalent machine code. It is not always obvious,

whether a condition is simple or compoUnd from the view point of the,computer.

As an example wpsider the box

We will see that in order to be translated into certai machine languages

this simple condition must first be expressed as a co and condition: Con-
,

sider SAMOS which has only the one branching instru on, BRANCH ON MIIINIV

This means th.at the only conditions directly translatable into machine language

are those of the form:-

ISY

' The box

TT.

is not of this type.

5 "
4

Now the reader should check that in_Figure A20 we have a sequence of equiya-

lent (interchangeable) condition boies,

a

5

1.4

r

Figure A20. Sequence of Equivalent Condition Boxes

The last box in thist sequence may be replaced by the combination in

Figure A21.

\-.
4

rfgtire. 21ao A Simple Condition Box and 4.-1 Equivalent

Combinaioewhich is easily Translated into

SAMOS Language

lot5,

444

b.

,

APPENDIX B

PARENTHESES

, The trWof Parentheses in Arithmetic Expressions

This appendix deals primarily with removal of parentheses. It forms a

companion Piece to Section 2-4.

Almost all of our use of parentheses in ordinary mathematical notation

springs from the custom of putting binary operators (and also relation-symbols,

etc.) between the things they are operating on. If we,were to put these

operators always at the left (or always the right) then with a few additional

minor modifications the need for parentheses would entirely disappear. (See

Chapter 8.) 4

As an example of why this is the case consider

A +.B X C .

If there were no special rulesto,guide us then we would not know whether to

interpret this as

(A

If the operators were written always at the left then the first of these

interpretations would be written as

.

, X + AMC and the second as + Ax(BC

With this hint you maybe aBIe-to see-how to write other expressions in

operators-on-the-left parenthesis-free notation. (Operators-on-he-left has

one agvantage over operators-on-the-right in that one knows at once when he

has come to the end ofen'expression.): However, this di'scussion is entirely

academic here, as we intend to stick with the "everyday" mathematical notation.

The fOilowing table (TableB-1).which was alluded to in Section 2-4 tea

variant of Table 2 -3. It differs from Table 2,3 only,in that parentheses

have been put around certain,foros.

446

4$45

Table B-1

Basic Forms of Arithmetic Expressions

) Kind
. .

Examples'

.

1. Numerical Constants.
17, .0065, 3.14152, 0

(-5), (-.061), (-17.62),(et7.)

2. Variables 0

1, A', A, B, DIST

AREA, ARGON, '(etc.)

3. Unary operational form' (-X) '

,.

4. -Binary operational forms
Y), *(X - Y), (X x Y)

-0:.J.Y), (X f Y)
.

Functional forms
SIN(x), COS(x)

.a.
ABS(X), SQRT(X),- (etc.)

0*.

With these basic forms written. in this way the fallowing rule holds with

no apologies or exceptions.

RULE:, If in an arithmetic expression a variable is

replaced by an arithmetic ekpxession the result

is_agaid-an,arithmetic expression.,

The arithmetic expressions resulting from the application oftlAs rule .

to with Table B-.1 areoften referred to as fully parenthesized expressions.

. These fully parenthesized expressions often fairly bristle with parentheses,

e''

like so many fish bonees) in

0(((f (" A C) x '(p. x E)) x x) F A

One important consequence of the type:_qf replacement described in the foregoing.

rule has not been mentioned.. To at if in an initial arithmetic expression
4

a variable X is replaced by an arithmetic, expression* as,to obtain a final

expression, then ,f X and the expressionrePlacing.it are equivalent (i,e.,

have the same value) then the initial and final expressions are equiVaent,.

This is in effect,the.old rule that: "When equals are substituted for is

the 'results are equal." Thus, _if_ X is equivalent to (A B) .then'r4:(XXY)
o

ry

447

44.6

is equivalent to .((A f B) X Y). ,

It should be.olear 'that an expression resulting from the use of this rule

tdgether with Table B-1 will always be enclosed by.a pair of parentheses

unless it is a single variable,ariable, a positive constant or starts with a function

name.. These "outer" parentheses actually serve two useful. purposes. First,

they enable us to t)11 when'Ve have reached the end of an expression. Second,

they leave us in a position to substitute the expression enclosed by the

parentheses for a variable in another expression without modification of our
o

rule.

As we have seen parentheses are necessary in order to indicate the order

in which operations are to be performed.. When we say that it is permissible

o
to omit certain pairs of parentheses, we mean,*of aourse, that the expression

obtained after omitting the parentheses is equivalent to the expression before

the. parentheses were omitted. There are two possible reasons for such an

occurrence:

1) because the value of the expression is independent of the

order in which operations are performed;

2) because certain conventions are adopted concerning the order in

which dperationsare to be performed in the absence of paren-

theses to serve as guideposts.

Te shall first consider cases Ain which the first. reason applies.

To understand the use and omAssion of parentheses in connection with the

operation of addition, recall that the operation of addition was first intro-

duced to us in the guise of a binary operation. In the development ofTarith-

metic and algebra we make considerable use of the binary nature of addition

(e.g., in our discussion Of the fidld prciperties, and so, forth).

In calculating, however, from the onset we almost completely ignored the

binary nature of, addition. If we were given the problem: "Four boys worked

durifig the summer depositing their earnings in special tank accounts. Find.

the total amount earned by the boys," our method of solving the problem would

.be to yrite down the balances in,their bank books in any order

0,,
.215.67

308.42
179.51

. .\ 247.15
\ . 950.75

and then add them by a method that does not employ grouping the numbqs in pairs.

448

Even, tugh we regard addition as a binary operation, when we see,an

inscription such as

A + C + D + IL_

'it is meaningfUl to us. The reason for this'is thatas a consequence of the

associative propert42f addition, no.matter
%
how we insert parentheses to

dedompose the indicated sum into successive binai'y sums, the value will be

the same (for given values assigned to the variables)':

A few of these In:Lys of inserting parentheses are shown.here:

((A + B) + (C + (D + E)))

(A + ((B + C) + (D +

((((A + B) + C) + D) + E) .

How many ways are there in all of inserting parentheses into the given

<string so,,as to obtain an expression which is "fully parenthesized?

For the reasons that it is unambiguous, that we are indifferent to the
(

order in which the operations are performed, and that they are less messy to

write, we accept such exprestions as

A +B+C+D+E.

Now we are ready to bring computers back into the discussion. When. we do

r some suriTliaea.

Now the binary nature of addition which we had just thrown out the window

codes flying right back in again. For in digital computers addition is always

Ilt'binary operation. That its, computers never add up (or down),col s of

figures but always add just two numbers at a time. Thus if we have Omitted'

the-parentheses in such an expression .as

A-PB+C+D+E
-

the computer, in order to perform an evaluation, must -; in efgect,--reStore the

parentheses somehow.

Now comes the shocker. Although computer addition is commutative, it is

not always associative. 'ads is due to round-off error and the phenomenon is

illustrated and explained in Chapter 6. When adding a small number of terms

afi'of the same sign and o#the same order of magnitude, the differences
.

between the evalualidn obtained with dilferen grouping of terms is relatively
1

small. But, with sums involving a small nu er of large terms together with

a large number of small terms these differences can be enormous. .

449

448'

s

A

We can see that we will not always be indifferent to the order in which

the additions are performed and in the, event that large errors might otherwise

ensue we may find it necessary to specify the -order of operation: However, we

will frequently express successive additions without parentheses and it will

be of interest to.know the order in which these additions will be Carried out.

The fact is that the computer performs the operation in the way that."

seems most natural to us, namey, computing from left to right. This process

can be described in tyro equivalent ways. The order of operation,is equivalent

to that indicated by Inserting parentheses into

A + B + C'+ D + E

from left to right as below

((((A + B) + C) + p) + E)

after. which we say that our expression is "fully parenthesized".

Another way of describing the same order of operation is

parentheses around the first two terms

(A + B) + C+ D + E .

to first put

Now look up the current values of A and B; say-they are 3 hnd 5.

Now calculate the value of (A + B), which in our case is .8. Next substitute

thrsVECE3),
8 + c + D + E .

Then proceed recursively (i.e.., put parentheses around (8 + C), etc.).

Such a recursive description is 'much simpler thai "fully parenthesizing"

when we have expressions involving both, addition and multiplication with large

numbers of terms'andzfactors.
.

Everything which has been said about addition carries over to multipli

cation. The mathematical operation of multiplication is commutative and.

associative so that values of products of several factors are independent of

forder and grouping. Thus, for example,

' AXBXCXD'X E

has an unambiguous mathematical meaning. In computifig again tiplication is

commutative but not associative,..so that for.products of more than two factors

the computer evaluations will depend on the order in ,which the factors are

Britten and on the grouping (i.e., way in which the parentheses are inserted).

If a computer encounters a string'of factors as displayed above it will

45o

4 19

"compute from left to right." That is to say, the order of computation will

lib that indicated by the following insertion of parentheses:

'((((A x E.) x C) X,D) x E)

Another way of describingithis same order of calculation is as follows

First put parentheses arotid the first two factors.

1 .

(AXB)XCXDxE

Next, look up the current value of A and B; say they are 3 and 5.

Now calculate (A x B) which in our case is 15. Substitute this value for

,(A X B), .thus

15XCXDxE,

and proceed recursively.

We have seen that in expressions involving addition only o multiplication

only we were more able to omit parentheses because all ways of inserting

parentheses lead to equivalent expressions. In some other expressions we

sometimes delete parentheses, but for a very different reason. This reason

islkhat we have adopted a certain rule giving the order in which operations

will be performed in the absence of parentheses. These rules together with

the associated "precedence level" are found in Section 2-4, Accompanying
1-

This is a rule for doing something that you have been doing quite success7'

fully for several years.' Ybu are not expected to remember the rule and you

enot expected tp apply it. In spite of all this there is still a reason

for including the rule here. For we want to, know that the rule can be

formulated in a mechanical way which could be taught to a machine if. necessary.

feu may be interested in verifying that the rule conforms with your usual
5

praq ice.

Before giving the rule it will be necessary to present a list of .

precedence levels of operations (Tab145B-2) somewhat modified from that in

Table 4.

Table B -2

PRECEDENCE LEVELSOF OPERATIONS' OR
PARENTHESIS REMOVAL

.

LEVEL OPERATOR (,i.e, Operation Symbol)'

,HIGH

LOW

1 i f (exponentiation)

2 - - (uparyX /
.

i

! - (binary) .

4,1

iron, curtain'

The use of the,iron curtain will be seen later. The minus, "-", in names of

negative'constants is to be treated here the same as the unary minus. The

unary minus can always be distinguished from binary minus. Why? ,Because the

unary minus,will always be (in application of these. rules) immediately pre-

ceded by a left parenthesis "(" or it will be the initial symbol in the

expression. Such positions can never be occupied by binary minus.

We shall need these definitions. By a "subexpression" of an arithmetic

expression we mean the expression included between a parenthesis pair. By

the level of a subexpression we mean the numerically greatest of the levels of

the operators occurring in that subexpression and enclosed in no further

parentheses. For example in the expression

((A + 3xc/D1 2),x (G - P))

this subexpression is of level 3

Now we formulate the rule for removal of parentheses.

FABBINTHESIS'REMGRUIE

A pair of parentheses enclosing an expression of level n

may be removed provided all three of the following conditions are

satisfied:

.(l) This removal will not result in the juxtaposition of

two operators.

. (2),. The right parenthesis is followed by:

a. nothing; or

b. another right parenthesis; or

c. an operator of level > n.

(3) The left parenthesis is preceded by:

a. nothing; or

b. another left'parenthesis; or

c. an operator of level > n; or

d. an operator of level = n, but from the leh of

the iron curtain.

Two reminders are necessary.
0

- First, we observe that the rule provides for the removal of outer paren-

theses around an expression. And we demand that these outer parentheses be

452

451

restored before such a "de- boned" expression is substituted into another

expression.

Second, note that our rule only governs straight removal of parentheses.

It will not allors to replace

A -(B + c) by A - B 7 C

which involves parenthesis removal and changing an operator. Nor will it

allow us to replace

AX(B + C) by .AXB+AXC

which involves the use of the distributive law:

0 4

A X (B + C) = (A X BS +(A x C)

followed by parenthesis removal. Nor does it allow us to replace

A + (-B) by A - B

.
ih which an operator disappears. Nor does it allow us to replace

+ (-B) by -B + A o 9' ,

which involves the commutative law,

A + (-B) = (-B) + A

followed by parenthesis removal. Nor does it allow us to replace

-(-A) by A .

°

0 A '

)
. .

b . dk

nt c?

1 .
A j 0

'LT PO

0

* *C9 '

, 4

5

,

A

163

452
t

V ,

;

0

INDEX

acdumulator, pp. 12, 418 ,.

algorithm, p. 24
alphanumeric, p. 81

alphanumeric constants, p. 83
alternate exits, p. 252
approximation, p. 265
area algorithm, pp. 320, 323, 327
area, p. 310

by graphing, p. 311

trapezoidal approximations, p. 3f4
area procedure, p. 328

arithmetic expressions, p. 54
arithmetic unit, pp. 12, 415

4

assignment, pp. 36, 45
assignment box, p15. 43, 47
assignment statement, p.. 370,
associativity, non-, p. 277
auxiliary 'variables, p. 102

Babbage,, Charles, p. 3 -

back solution, p. 346
ball weighing Problem, p. 25
Balcert, J. P., p. 3

binary,arithmetic, p. 273 .

bisection, p. 298
bisection algorithm.for roots, p. 302
bisection procedure for roots, p. 305,

r

branch instruction, p. 15
branching, p. 89

branch unconditionally, p. 423
conditionally, p. 424

brick, chambers,' p, 231

central unit, p. 415

character string, p. 259
- charactersi p. 17

chopping, p. 267
coding form, p. 422
common divisors, p. 110
compiler, p. 360
comp ents, p. 146
comp..id conditions, p. 120.
concatenation, P. 406
condition box, p. 89
conditional statement, p.. 370

console, p. 415
constants, p.Np

numerical, p. 58 *

alphanumerical, up., 83

.control unit, p. 14
contit procedure, p. 362
core, magnetic, p. 7
counter, p. Ne

cube root, p. 220

Current value, p. 46e

A

9

0

- WI
de z

O

a

4'53

ro, r

-

44-

9

aecO*Osition
of assigt7ment statements,- p. 3

delete prOcedure, p.0365
destructive readin, 'pp. 10, 42
diagnosticqe%p. 374
double .7ubscripts, p. 149

ENIACS`p. 3
p. 358

4
;. error, p..268

:in solving f quations,.p. 281
Euclidian ritbm, p% 0
EXecste, p. 242
execute box, p. 2142

exponent part, p. 19
external identifiers, p. 383

fa.ctorization, p.-190), J
..

-- .7_4 -.' -

factors of an imtieger, pp. 171, 173 0

-Fibonacci sequence, pp. 102, 107, 161
,..

.floating. poin ,.pp. 18, 266 \

flow chart, : 32, 35
fraOtiona1 rt, p. 71 \

..,..

functions, 7.

..

mathemat cal concept,-1. 221
future developments; p. 409 \

us-s-algorithmvp4--3-48

general flpw chart.gp. 375
gfeatest common ditisor, p. 110
greatest integer function, JR. 70-1'

6
s'

Hollerith, p. 23

(. identifiers, p. 369
identifying statement types, p. 380
index registers, p. 430 -

informati9n retrieval, p. 359
input, pp. 22; 36
instructions, p. 418
,integer rounding procedure, p. 77
interest, p. 239
internal,identifiers, p: 383
interpolation, p. 184

.'isolatds, p:-384
i.terationrbox, p: 160

key word p. 370

label, p. 254 6

language,
Leibnitz,' p. 3

oe

inx, p. 311.

locating roots '

by graphing, p. 295
by successive bisection, p. 298

logarithm function, p. 311
looping, p. 157
LuLkasiewiez notation, p. 391

,1

ire J

Rot

.6
tiaai

machine languag pp. 32, 415
match procedure, p. 367
matrix, p. 149
Mallohley, J. W., p. 3
memory, pp. 4, 67
monitor, p. 373

ionotone sequence problem, p. 206
move procedure, p. 364
multiple branching, p. 120

Napier, p. 3

nested loops, p. 190
Newton's method, p. 217

non-destructive read out, pp. 10, 43
non-numeric problems, p. 359
numerical constants, p. 58

output, p. 36

. parentheses, pp. 54, 9, 446
parenthesis removal rule,

/ partial pivoting, p. 355
Pascal, p. 3
payroll, p. 164
pivoting, p. 355.

-; Polish notation, R. 391 ?

polynomial-evaluation, pp.-1/ , 176
postfix notation, p. 391
precedence levels -

for arithmetic operations, p. 61
for parenthesis removal, p. 451
for relational expressions, pp. 130, 132'

precedence table, p. 393 '

precedence values, p. 401
precision part, p. 19
prescan p. 374
.prime factorization, p. 198

procedural language's, pp. 3, 32.
procedure,'p. 241
program, p. 4

punched cards, pp. 22, 66

quadratic equation, c. 30

reference flow chart, pp. 217, 229
registers, p. 14
repetition, p. 41

.

roots, p. 295
RCUND, p. 77
rounding, p. 267
rounding functions, p. 69'
ROUNDUP, p%77

,

SAMOS, pp;:10, 415
taaation, p. 359

Mintaine,functibn, p. 290
solid state electronics.. 3, 5
sorting, pp. 143, 202

- - square root, p. 215
0

1 4

C-

- 1

.,

.4

.statement p. 254
stickler, p. 195
storage unit, pp. 415, 416
store, p. 10
storedprogram, pp. 3, 4
string, p. 259
subexpression, p. 452
subprogrami,p. 437
subscripted variables, p. 134
subroutine, p. 229
substring, p. 259
switch variable, p. 140
symbol manipulation, p. 361
syntax, p. 374 0

systems of linear equations, p. 330
back solution, p. 346
Gauss algorithm, p. 348

. giaphical solution, p..330
substitution methOd, p. 332'
systematie method; p. 333

p. 179
tracings p. 116 -

translation, p. 359
truncation, p. 78
TRUNK, p..77.

rrr

UNIFAC, p. 224
Urban ICI, p. 3

variables, p. 45
veptor,.p. 146
Von Neumann, John, p. 4'

window'box, p. 50
word, computer, p.

-4

,e

9

re

456.

a

